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ABSTRACT 
 

This paper presents a lognormal ordinary kriging (LOK) metamodel algorithm and its application to 

optimize a stochastic simulation problem. Kriging models have been developed as an interpolation method 

in geology. They have been successfully used for the deterministic simulation optimization (SO) problem. In 

recent years, kriging metamodeling has attracted a growing interest with stochastic problems.  SO 

researchers have begun using ordinary kriging through global optimization in stochastic systems. The 

goals of this study are to present LOK metamodel algorithm and to analyze the result of the application 

step-by-step. The results show that LOK is a powerful alternative metamodel in simulation optimization 

when the data are too skewed. 
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1. INTRODUCTION 
 

Simulation models have proven to be a notably powerful tool to evaluate complex systems. These 
evaluations are commonly in the form of responses to “what if” questions [1]. Carson and Maria 
[2] defined simulation optimization (SO) as the process of finding the best input variable values 
among all possible combinations without explicitly evaluating each possibility. According to Fu 
[3], SO is the optimization of performance measures based on the outputs of stochastic 
simulations. 
 

The main assumption of SO is to estimate the objective function from simulation results when it 
is not directly available [4]. The output data obtained from stochastic simulation models are much 
more expensive when considering of running time than obtained by evaluating analytical 
functions [1]. The simulation models can be notably complex and a simplified model of these 
models can be constructed. This simplified model is defined as a metamodel, i.e., a “model of 
model”. Metamodeling is the process of generating metamodels and used to find the proper 
functional relationship between input and output variables of a simulation model based on the 
computer experiment results [5, 6]. There are several metamodel approximations in the literature. 
One of the metamodel methods is kriging [7]. Kriging metamodels are global instead of local [8]. 
Kriging metamodels have been used to analyze simulation output for the purpose of SO and 
sensitivity in recent years. Kriging was originally developed by Matheron [9] as a geostatistical 
interpolation technique to interpolate input point data and estimate a mineral resource model in 
the mining industry. Kriging is an optimal spatial regression technique that requires a spatial 
statistical model, which is popularly known as a variogram and represents the internal spatial 
structure of the data [10, 11].  
 

Sacks et all. [12] applied the kriging model to the deterministic simulation model. Mitchell and 
Morris [7] mentioned that kriging model can be used as metamodel for stochastic simulation. Van 
Beers and Kleijnen [13] applied kriging models to stochastic simulation as an SO method. There 
are a few examples which used ordinary kriging (OK) metamodel for stochastic simulation model 
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in the literature [13, 14, and 15]. Ankerman et all. [16] applied stochastic kriging which is an 
extension of basic kriging theory to the stochastic simulation metamodelling. Mehdad and 
Kleijnen [17] applied intrinsic kriging to the stochastic simulation metamodelling. 
 

This paper focuses on the lognormal ordinary kriging (LOK) metamodels to use optimization of a 
stochastic simulation problem. When the simulation output data are significantly skewed, the 
predicted outputs are not normally distributed. The logarithmic transformation of the output data 
can provide a better solution [18]. From this viewpoint, in this paper, a LOK metamodel 
algorithm is proposed to optimize the cost of the communication network system, which was 
originally described by Barton and Meckesheimer [5]. They used logarithmic transformed outputs 
in regression metamodeling. 
 

Our own C++ source code is driven for our proposed LOK algorithm. To the best of our 
knowledge, there is no other study for LOK modeling through SO. LHD is used for the 
simulation experiments to prevent a high correlation among the experiments to maintain the 
random structure of the design. The LOK metamodel has been successfully applied to the 
considered problem.  In addition, a sensitivity analysis was made for the SO results. The 
performance of the proposed LOK metamodel in optimizing the total cost of the communication 
network system was compared with the OK and regression metamodels. LOK metamodel 
provides a higher-quality solution than the regression and OK from the optimization viewpoint. 
Based on the findings of this study, LOK can be used as a powerful alternative metamodel in 
stochastic SO when the simulation outputs are significantly skewed. 
 

The remainder of this paper is organized as follows. In section 2, kriging method is discussed, 
including the basic assumptions and mathematical formulas of ordinary and lognormal kriging. In 
section 3, the problem statement, experimental design, simulation and application of lognormal 
kriging to simulation results and the optimization results are explained. Section 4 presents the 
conclusions.  
 

2. KRIGING METHOD 
 

Kriging is an optimal, unbiased prediction method of regionalized variables at unsampled 
locations using the structural properties of the variogram and the initial set of data values [19].   
The output data are weighted based on the variogram model in the kriging models. Kriging 
provides the prediction variance at every predicted point, which indicates the accuracy of the 
predicted value. The effectiveness of kriging depends on the correct specification of the 
theoretical variogram model. More details on the kriging techniques are provided in the classical 
reference books by Journal and Huijbregts [20], Isaaks and Srivastava [21] and Cressie [11]. 
Furthermore, a comparative study between regression and kriging metamodels is presented in 
Kleijnen [8]. 
 

The objective of kriging is to predict the value of a random variable, Z(x), at new points in a 
region D from experimented data {z(x1), z(x2),…, z(xn)} at points {x1, x2, . . . , xn}. Let us assume 

that we want to predict Z�x�� at x0. For the predictorZ��x��, we use a linear combination of 

experimented points. Z��x�� = ∑ λ	
	 Z�x	�	 is a weighted average of observed data with weights λ	. 
We want the prediction to be unbiased as shown in equation (1).  
 E 
Z��x��� = E�Z�x��� (1) 
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2.1 VARIOGRAM 
 

The variogram (semivariance or semivariogram) estimation is a notably important step of the 
kriging process because it determines the kriging weights [22]. The original semivariogram term 
was used by Matheron because it is one half of a variance [23].  
Z(x)={z(x1), z(x2), . . . , z(xn)} is the experimental data set, which consists of the outputs of the 
simulation model that satisfies the second order and intrinsic stationary. Matheron [9] defined a 
logical estimator of experimental variogram as shown in (2). 
 

γ�h� = 12N�h� ��Z�x	� − Z�x	 + h�������
	��  (2) 

 

where N�h� is the number of pairs, �Z�x	�, Z�x	 + h��, and h is the distance between the 
experiments [23]. Cresssie and Hawkins [24] proposed a robust variogram estimator as shown in 
(3). 
 

γ�h� = 12 � 1N�h� ��Z�x	� − Z�x	 + h��������
	�� �

 
/ "0.457 + 0.494N�h� ) (3) 

 

When we calculate the kriging weights for each non-experimental point, we need a theoretical 
variogram model, which must fit the experimental variogram. Myers [23] has listed four 
variogram models as a function of distance h. 
 

In this study, the exponential variogram model in (4) is used as the fitted theoretical variogram 
model to the experimental variogram, where 	a+, 	a�	and		a�	are the model parameters. 
 

γ�h� = .	a+ + a� /1 − exp"−ha� )2 	if	h ≠ 0
0																																										if	h = 0 6 (4) 

 

2.2 ORDINARY KRIGING 
 

The random variable Z(x) satisfies two model assumptions in equations (5) and (6) [9, 10, 23, and 
11].  
 Z�x� = µ + ε�x� (5) 

 E�Z�x�	� = µ is constant and unknown                                    (6) 
 

The kriging predictor is given in equation (7) and satisfies equation (8). 
 

Z��x�� =� λ	


	 Z�x	� (7) 

 
 

� λ	


	 = 1 (8) 

 
The mean square prediction error is calculated in equation (9). 
 		�Z�x�� − Z��x���� = �Z�x�� − ∑ λ	
	 Z�x	��� = −∑ ∑ λ	
7 λ7
	 γ�x	 − x7� + (9) 
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																																																																																	2 ∑ λ	
	 γ�x� − x	�	       
 
The constrained minimization problem in equations (10) and (11) is suitable to find           

                                                            λ = �λ�, . . , λ
�′. 
 Min	�Z�x�� − Z��x���� (10) 
 
subject to 

� λ	


	 = 1 (11) 

 

Lagrange multipliers method is convenient to solve this constrained minimization problem. Thus, 
by substituting equations (10) and (11) into L�λ,m�, equation (12) is obtained.  
 

L�λ,m� = −�� λ	


7 λ7



	 γ�x	 − x7� + 2� λ	



	 γ�x� − x	� − 2m;�λ	



	 − 1< (12) 

 

Differentiating with respect to λ	 and m, we obtain the following system of linear equations. 
 ∑ λ7
7 γ�x	 − x7� + m = γ�x+ − x	� , for i = 1, 2, . . . , n (13) 

  

� λ	


	 = 1 (14) 

 

The system of equations in equations (13) and (14) can be written in a matrix form as shown in 
equation (15). 
 

Г+	λ+ = γ+ (15) 
 

Where 
 

 γ�x� − x�� γ�x� − x�� … γ�x� − x
� 1  

Г+ = … … … … …             (16) 

 γ�x
 − x�� γ�x
 − x�� … γ�x
 − x
� 1  

 1 1 … 1 0  
 
 

γ+ = �γ�x� − x+�, γ�x� − x+�,… . . , γ�x
 − x+�, 1� (17) 
  

λ+ = �λ�, 	λ�, … . , λ
,m� (18) 
 

This system has a unique solution for λ+ if and only if  Г+ is invertible. Thus, equation (19) is 
obtained. 
 

λ+ = Гo?�γ+ (19) 
 Z�x�� is predicted using equation (20). 
 Z��x�� = λ	′Z (20) 
 



Operations Research and Applications : An International Journal (ORAJ), Vol.5, No.1, February 2018 

5 

 

We must only recalculate γ+ for a new point x0 using the fitted theoretical variogram model. 

Matrix Г+ does not change for new positions of x0 but only changes when the experimental data 
are modified or another variogram model is selected. The minimized prediction variance is also 

called the kriging variance and denoted by σ��x�� [10].  
 

σ��x�� =� λ	


	 γ�x	 −	x�� + m (21) 

σ��x�� = λ+. γ+ (22) 

σ��x�� in equations (21) and (22) are easily calculated given		λ+  and  γ+.  

 

2.3 LOGNORMAL KRIGING 
 

If the outputs are too skewed, the normality assumption for the kriging prediction is violated. 
Therefore, a data transformation is used to solve this problem [18]. 
 

Let Z(x) denotes a random process. Logarithmic transformation of Z(x) given in the equation (23) 
is normally distributed. 
 

                                                   Y(x) = ln Z(x), x Є D 
 
(23) 

 

The aim of this transformation is to predict a random variable Z(xo). The main step here is to 
transform the problem from Z to the intrinsically stationary normally distributed Y. The predictor 
of Y(x�) is given in equation (24). 
 

YA�x�� =� λ	


	 ln	Z�x	� =� λ	



	 	Y�x	� (24) 

 

The back-transformation of  YA�x��, Z��x��, is unbiased with equation (25), 
 

Z��x�� = expCYA�x�� + σD,E�2 − mDF (25) 

 

where σD,E�  is the kriging variance of Y, and mD is the Lagrange multiplier defined in equation 

(12) [11]. In the literature, there are several theoretical studies of LOK such as Journel and 
Huijbregts [20] and Dowd [25], and some useful application of LOK in geology such as Gilbert 
and Simpson [26], Mc Grath and Zhangb [27], Paul and Cressie [28] and Lark and Lapworth [29].   
 

3. SIMULATION OPTIMIZATION APPLICATION WITH LOGNORMAL KRIGING 
 

3.1 PROBLEM STATEMENT  
 

In this part of the study, a communication network system is considered to apply the proposed 
LOK metamodeling approach.  Figure 1 shows the flow chart of the network, which consists of 
three sub-networks i=1,2,3 with randomly arriving messages. The problem in this system is to 
find message routing percentages (as input factors) through the communication network. The 
objective of this problem is to minimize the total cost (c) of the system with the three sub-
networks [5]. Messages go to network 1 with probability p1, the remaining messages go to 
network 2 with probability p2; the remaining messages go to network 3 as shown in Figure 1. The 
total system cost is computed with the assumptions that per time unit cost for each message is 
$0.005 and the message processing costs ai are $0.03, $0.01, and $0.005 for the three networks. 
The inter-arrival time of messages has an exponential distribution with a mean of 1 time unit. The 
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network transit times have triangular distributions with a mean of E(Si)=i and limits +/- 0.5 for 
each network i.  
 

The objective of this problem is to find the routing probabilities (p1, p2) that minimize the total 
cost of the system. Hence, p1 and p2 are the input set of the SO problem. Then, x1 and x2, which 
are the decision variables of this problem, are replaced by p1 and p2, and Z(x) is used to indicate 
the average total cost of the system to define the considered optimization problem. 

 
 

Figure 1.  Flow chart of the considered communication network system 
 

Barton and Meckesheimer [5] used the logarithmic transformed outputs in their study and a 
regression metamodel to optimize the total cost of the communication network system to 
determine the routing percentages (p1, p2). Their strategy was to sequentially explore the local 
subregions of the experimental region to find a new experimental subregion closer to the 
optimum. This strategy applied five iterations to the problem. A disadvantage of the method is 
that the automated versions of the algorithm are not available. Global metamodels present an 
opportunity for optimization using a single metamodel instead of a sequence of fitted local 
metamodels. As a global metamodel, kriging can be fitted once based on a set of simulations from 
a global experiment design; then, the optimization can iteratively proceed using the same 
metamodel [5]. 
 

A simulation model of the system is built and coded using the Arena platform (Arena 14) with 
discrete event simulation. To compute the cost of the system, we define the simulation length to 
be 1000 messages. We define the input set x1=0.33 and x2=0.50 for the initial run to validate the 
simulation model and define the number of replicates. The number of independent replicates is set 
as 10. The mean total cost of the system is 61.76, and the variance of the cost is 243.84.  
 

3.2 EXPERIMENTAL DESIGN FOR KRIGING 
 

Latin hypercube designs (LHDs) are often used to find the fitted kriging metamodel for I/O 
simulation data [8, 30]. LHDs are particularly well suited for kriging because they can cover the 
design space [14]. LHD was first described for computer experiments by McKay et al. [31]. 
LHDs are produced by Latin hypercube sampling, i.e., dividing each factor axis into n equal 
intervals [32]. Firstly, the number of design points, n, to be used in LHD is decided. Then range 
of each input variable is divided into n equally probable intervals. An n x n design matrix is 
obtained for two input factors. In LHD, each column and row has one design point randomly 
assigned [33].  
 

A randomly generated LHD may cause two problems. First, the factors may be perfectly 
correlated. Second, a large area may be unexplored in the experimental region.  There are some 
studies in the literature to avoid these problems [34]. The main idea of these studies is optimizing 
LHDs for space filling. 
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In this study, a random LHD algorithm is used to obtain the design points, and the design region 
is divided into four blocks to ensure that the design points cover the design space to avoid the 
perfect correlation among the input variables. The random LHD algorithm is coded in C++. 
LHD is used for two-dimensional input variables as the experimental design strategy. The design 
region is considered as x1= (0.35-0.80), x2= (0.35-0.80) for each input variable. The selected 
number of design points is 16 because obtaining data from the stochastic simulation model is 
expensive. The simulation model runs 10 replications for each 16 design points. The average 
simulation outputs are listed in Table 1. 
 

Table 1. Simulation outputs for the design points. 
 

 
 

3.3  LOGNORMAL ORDINARY KRIGING ALGORITHM 
 

The following LOK algorithm is proposed to find the total average cost Z(x) with the input sets x1 

and x2. 
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The Design and Analysis of Computer Experiments (DACE) is a Matlab toolbox. This software is 
typically used to construct a kriging approximation model based on data from a computer 
experiment, and this approximation model is used as a surrogate for the computer model [35]. 
The DACE toolkit is generally used in kriging metamodeling for simulation optimization [13, 14, 
and 8]. In our study, our own C++ source code is driven for our proposed LOK algorithm. To the 
best of our knowledge, there is no other study for LOK modeling through SO. 
 

A logarithmic transformation is used to simulate the output data obtained with the LHD because 
of the high variation among the replicates as discussed in section 2.3. Barton and Meckesheim [5] 
used logarithmic transformed outputs in their regression metamodelling study. After the 
variogram analysis as discussed in section 2.1, the exponential variogram model is selected as a 
fitted variogram model: γ(h)=0.3*(1 - exp (-h/20)), as shown in figure 2. The LOK metamodel 
and a searching algorithm are used for the entire response region with 45x45 input grids of x1 and 
x2 to find the minimum expected value of Z. The search algorithm seeks the minimum among all 
estimated Zs of possible combinations of the input set of x1 and x2. The minimum output of the 
LOK model is estimated as Y*=3.4988 with the set of input variables as �x�∗, x�∗�	= (55, 63) with 

kriging variance	HI,J� =0.0353 and Lagrange multiplier mY=0.  
 

The back-transformation of ln Z∗ to Z∗ is Z∗ = exp (3.4988 + 0.0353/2) = 33.6647, which gives 
the correct estimated optimum output, because the log transformation is monotonic. 
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Figure 2. Fitted theoretical variogram models. 
 

The metamodel of the considered problem is also modeled by OK to compare the results of the 
LOK metamodel. The exponential variogram model is selected as the fitted variogram model 
(γ(h)=3650*(1 - exp (-h/61))). A point map is created for the entire response region with 45x45 
input grids of x1 and x2 to find the minimum Z using the OK. A minimum output of the OK 
metamodel is Z*=30.05 at �x�∗, x�∗� = (49, 58), whereas the LOK gave Z* = 33.664 at (55, 63). 
 

3.4 VALIDATION OF KRIGING RESULTS THROUGH SIMULATION AND NEIGHBORHOOD 

SEARCH  
 

The last step of the proposed SO is the result validation. The simulation model of the system and 
the neighborhood search approach are used to obtain a better solution. This step is important to 
eliminate the kriging errors. The simulation output analysis results in Z∗=32.99 with the variance HK� = 0.1702 for the factors �x�∗, x�∗� = (55, 63).  
 

Biles et all. [14] suggested that some neighbors of the predicted optimal point should be 
simulated after the kriging process to improve solution. This step is called the sensitivity analysis 
[36]. Their approach is to explore the experimental area defined around the optimum point.  

In this study, firstly, the two neighbor points of �x�∗, x�∗� = (55, 63), (x1, x2) = (55, 64) and 
(x1, x2) = (55, 65), are selected for simulation to obtain a better solution. Then, the direction 
(x1, x2) = (54, 63) is simulated. Finally, the two points, (x1, x2) = (53, 63), (x1, x2) = (52, 63) are 
simulated respectively. The average results of 10 replicates are given in Table 2. The design point 

(x1, x2) = (53, 63) is the best point among them with Z(x) = 32.97 and variance, HK� = 0.0962.  
 

Table 2. Simulation results for the neighbors of the kriging results. 
 

 
The simulation model is also validated for the optimum point OK metamodel, �x�∗, x�∗� = (49, 58). The simulation output analysis results have Z∗=33.22 and variance HK�= 
0.4501.  
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Table 3 summarizes the results of the LOK, OK and regression metamodels and their confidence 
intervals. Using the SO with regression and kriging metamodels of the considered communication 
network system, the estimated average costs are 32.97, 33.22 and 33.04. The LOK metamodel 
finds the best routing percentages (p1=53%, p2=63%) and minimizes the overall system cost. 
Although there is no statistically significant difference among the LOK, OK and regression 
results at α=0.05 significant levels, the LOK metamodel has narrower confidence intervals than 
the OK and regression metamodel strategy. Thus, the LOK algorithm provides a higher-quality 
solution than the regression and OK from the optimization viewpoint. 
 

Table 3. SO results with kriging and regression meta model. 
 

 
 

4. CONCLUSIONS 
 

This paper discusses the LOK metamodel to optimize the cost of communication network 
systems, when the simulation output data are significantly skewed. This study also demonstrates 
the implementation of LOK metamodel in SO.   Firstly, LHD is used for the simulation 
experiments to prevent a high correlation among the experiments to maintain the random 
structure of the design. Then, the LOK algorithm is developed and coded in C++ platform.  The 
LOK algorithm is applied to the simulation results. The kriging results are validated by the 
simulation model. In addition, a sensitivity analysis was made for the SO results. LOK 
metamodel provides a higher-quality solution than the regression and OK from the optimization 
viewpoint. 
 

According to the best of our knowledge, the LOK is first used as a metamodel for SO. Based on 
the literature and the findings of this study, the LOK is an alternative metamodel method to 
traditional regression approaches and OK metamodel in SO, when the simulation output data are 
significantly skewed. 
 

Future studies will concentrate on the development of high-dimensional LOK and its software 
integrated with heuristic optimization algorithm for SO purposes.  
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