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ABSTRACT 
 
In this paper, the authors considered the single vendor single buyer integrated production inventory 

problem with stochastic demand for an imperfect production process. They relax the assumption that, the 

lead time is varying linearly with the lot size. That is, the lead time is composed of a lot size dependent run 

time and constant delay times such as moving, waiting and setup times. A solution procedure is mentioned 

for solving the proposed model and numerical examples are used to illustrate the benefit of integration. A 

sensitivity analysis is also performed to explore the effect of key parameter D (demand). A simple 

procedure is suggested to obtain an approximate solution of the proposed model. Examples are used to 

illustrate the model and explore the effect of important parameters on the production schedule and total 

expected cost.  
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INTRODUCTION 

 
The single-vendor single-buyer cooperative production inventory model received a lot of interest 

in recent years by several researchers. The reason is this joint productive model has the skill to 

offer customers shorter waiting time and minimize the inventory cost. And also single-vendor 

single-buyer cooperative production helps to resolve the problem areas along the process enabling 

in trade to take vital action and further reduce price to get better the final value. The model is 

facing the customer is how much to order in each purchase order. On the other hand, the model is 

facing the seller is to make a decision the fiscal production batch size and the most economical 

number of shipments in which the whole order quantity to consumer will be supplied. Therefore, 

an integrated inventory rule is useful to decide the economic order quantity and shipment policy.  
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LITERATURE REVIEW 

 
Banerjee [1] developed a joint economic-lot-size model for a special case where a seller produces 

to order for a consumer on a lot-for-lot basis. By modifying Banerjee’s lot-for-lot assumption, 

Goyal [5] extend a more universal joint economic lot size problem that provided a lower-joint 

total relevant cost. Hoque and Goyal [7] developed an optimal solution procedure for the single-

vendor single-buyer production–inventory structure with uneven and equal sized shipments from 

the seller to the consumer and under the capacity restriction of the transport tackle. This 

supposition is questioned by Kim and Benton [10] and considered the effect of lot size on lead 

time and safety stock. Kim and Benton [10] established a linear association between lead time 

and lot size based on explanation of Karmarkar [9]. They included this lead time lot size relation 

into the classical probabilistic continuous review (Q, r) model. 

 

In many literature, the single vendor-buyer integrated inventory model, that is frequently assumed 

that the shortages are not allowed and demand is deterministic. Ben-Daya and Hariga [2] 

extended this by taking the annual customer demand to be stochastic with variable lead time and 

thereby allowing shortages. Vandana, B.K.Sharma [13] allowing shortages and considered an 

economic ordered quantity model for retailers partial permissible delay in payment linked to 

order quantity. Most of studies deal with the perfect production process. Although production 

process is often considered to be ideal, but in reality, it is not possible that a manufacture 

progression is 100% defect-free. Huang [8] considered the imperfect production process. In that 

the defective percentage is considered among each lot size. In Vandana, B.K.Sharma., [14] an 

EPQ model with non-instantaneous deteriorating items are considered. In an integrated model, if 

the production is unsatisfactory then the seller who has to give warranty cost for faulty items, it is 

favorable to him, in particular, and to the supply chain as a whole, to spend amount (invest) in 

reducing the number of faulty items produced as in [12].  

 

And finally Dey.O and Giri.B.C [4] developed the optimal vendor investment for reducing defect 

rate in vendor-buyer integrated system for imperfect production process. In that the production is 

imperfect in stochastic demand. This paper deals the similar case of Dey.O and Giri.B.C [4] but 

the lead time is linear in Q and without any investment. Therefore we considered the stochastic 

demand, an imperfect production process and finite screening period in this paper.  

 

MODEL 

In this paper, we assume that the buyer is using a continuous review ),( rQ  inventory policy. The 

batch quantity and reorder level are often determined under the assumption of a constant lead 

time. However, from a real life point of view, lead time should be considered as a function of the 

production batch size. In this section, the classical ),( rQ  continuous review inventory policy 

with deterministic variable lead time is considered for the buyer. In particular, we assume that the 

lead time is proportional to the lot size produced by the vendor in addition to a fixed delay due to 

transportation, nonproductive time, etc., that is bpQQL )( . 

 

To extend the proposed model, the following notations are used: 

 

         D      Expected demand rate (units/unit time), 
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           P       Production rate ( p1 ), 

         A        Buyer’s ordering cost, 

         F        Fixed transportation cost per shipment, 

              
vh      Vendor’s holding cost per unit, 

              
1bh     Buyer’s holding cost for defective item per unit per time, 

              
2bh     Buyer’s holding cost for non-defective item per unit per time, 

              s       Buyer’s screening cost per unit per time, 

              x       Buyer’s screening rate per unit, 

              
y

       Percentage of defective items in each batch sizeQ , 

     Buyer’s shortage cost per item per time, 

w   Vendor’s unit warranty cost for defective items, 

 L = )(QL     Lead time, is directly proportional to the order quantity, 

(i.e.) bpQQL )(  where b  is fixed delay time due to transportation,                                                                                                  

production time of the products, 

           ))(,( QLrS  Expected shortage quantity per shipment, 

 Q   Batch size (Decision variable), 

 
n   Number of shipments (Decision variable), 

r   Reorder level (Decision variable) 

 

We develop the model with the following assumptions 

 

 A single-vendor single-buyer integrated inventory model for a single item. 

 Demand per unit time is normally distributed with mean D  and standard 

deviation . 

 The buyer places an order for nQ  items. The vendor produces these items and 

gives to the buyer as n  equal shipments. 

 The buyer follows the classical ),( rQ  continuous review with variable lead time

bpQQL )( . 

 The demand in lead time is normally distributed with mean )(QDL  and standard 

deviation )(QL . 
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 The reorder level r =Expected demand during lead time + safety stock   

)()( QLkQDL   where, )(QLk is safety stock and k  is the safety 

factor. 

 Shortages are allowed and completely backlogged. 

 y  is a percentage of defective items in each batch size Q . 

 The non-defective production rate is greater than the demand rate. 

(i.e.)  .)1( DyP   

 Unit screening rate is greater than the demand rate. (i.e.)  .Dx   

 The seller offers the warranty cost for the defective items to the consumer.   

 

 

Fig : 1 Vendor buyer holding area. 

 

The buyer places an order of size Q  for non defective items to the vendor. In order to reduce the 

production cost, the vendor produces nQ  items and transfers Q  batches of nQ  items each at 

regular intervals of DyQ /)1(   units of time on average. The length of each ordering cycle is 

therefore DyQ /)1(   and the length of the complete production cycle is DynQ /)1(  . 

 

 

 

 



Operations Research and Applications : An International Journal (ORAJ), Vol.3, No.1, February 2016 

5 

 

Inventory profile for the vendor buyer is depicted in Fig 1 

 

The problem is to find the number of shipments n, the shipment size Q , and the reorder point r , 

that minimize the total cost. 

 

We assume the demand is normally distributed with mean D  and standard deviation  . 

Therefore the demand during lead time also normally distributed with mean  )(QDL  and 

standard deviation )(QL .  

 Expected annual cost for the buyer is  
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where )(kF  is the complement of the cumulative distribution function. (i.e,) )(kF = )(1 kF  

 

Now the expected annual cost for vendor is 
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Solution procedure 

  

The total cost function ETC is convex in n. Since it is easy to see that  
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For fixed value of n, ETC can also be shown to be convex in k. 
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Next, equating zero the first derivative of ETC with respect to Q. 
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ALGORITHM 

 

 Step 1.  Set *ETC  and .1n  

 Step 2.  Compute 









)(

)(

nH

nDG
Q  where  x the nearest integer of x . 

 Step 3.  Find k  from (8) and Compute )(k  using (3) 

Step 4.   Compute 'Q  using (9) and, Set 'Q  by  'Q  

Step 5.   If 0' QQ , compute ),( nQETC  and go to Step 6. If 0' QQ , set 

Q  by 'Q  and go to step 3. 

Step 6.  If ),(* nQETCETC  , then set *ETC  by ),( nQETC  , *Q  by Q , 

*r  by r , and n  by 1n  and go to step 2. Otherwise set *n  by 1n  

and stop. 

NUMERICAL EXAMPLE 
 

For numerical studies, we consider the following data set: 

 

D =1000; P =3200; A =50; F =35; vh =4; 1bh =6; 2bh =10; s =0.25; x =2152; w =20; y

=0.33;    

 =100; b =0.01. 

  From table 1 we have the optimum number of shipments .7n  
The optimum order quantity .106Q  

The optimum reorder level .45r  
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The following table shows that optimal number of shipments and optimal batch quantity. 

 

n  Q  r  ETC  

1 

2 

3 

4 

5 

6 

7 

8 

9 

327 

223 

176 

149 

130 

116 

106 

98 

91 

115 

83 

68 

59 

53 

49 

45 

43 

40 

14,073 

13,298 

13,024 

12,881 

12,815 

12,784 

12,776 

12,782 

12,794 

 
Table:1 

 

Fig 2 Graphical representation of optimal solutions for ETC with respect to Q and n. 
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                         Fig 3              Fig 4 

Graphical representation ETC with respect to Q Graphical representation ETC with respect to n. 

 

SENSITIVE ANALYSIS 
  

The sensitive analysis of demand D  for D +50%, D +25%, D -50%, D +25% is performed 

Tables 2-5 in order to various demand affect the optimal solutions of the proposed model. Also 

the effect of demands depicted in Fig 5-8. 
 

Effect of D when it is 50% extra 
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Fig 5 Graphical representation of optimal solutions for ETC with respect to Q and n when D=1500 

 

Effect of D when it is 25% extra 
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Fig 6 Graphical representation of optimal solutions for ETC with respect to Q and n when D=1250 
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Fig 7 Graphical representation of optimal solutions for ETC with respect to Q and n when D=750 
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Fig 8 Graphical representation of optimal solutions for ETC with respect to Q and n when D=500 

 

CONCLUSION 
 
In this paper, we considered the single vendor single buyer integrated production inventory 

problem. Here, we assume that demand is stochastic; the lead time is variable and depends on 

batch size and other delays, such as transportation time. A simple procedure is suggested to 

obtain an approximate solution of the proposed model. Examples are used to illustrate the 

proposed model. 
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