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Abstract 

 
In this paper, an interval-valued inventory optimization model is proposed. The model involves the price-

dependent demand and no shortages. The input data for this model are not fixed, but vary in some real 

bounded intervals. The aim is to determine the optimal order quantity, maximizing the total profit and 

minimizing the holding cost subjecting to three constraints: budget constraint, space constraint, and 

budgetary constraint on ordering cost of each item. We apply the linear fractional programming approach 

based on interval numbers. To apply this approach, a linear fractional programming problem is modeled 

with interval type uncertainty. This problem is further converted to an optimization problem with interval-

valued objective function having its bounds as linear fractional functions. Two numerical examples in crisp 

case and interval-valued case are solved to illustrate the proposed approach.  
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1. INTRODUCTION 
 

For many practical inventory problems, some parameters are uncertain. Therefore to obtain more 

realistic results, the uncertainty in parameters must be considered, and the corresponding 

uncertain optimization methods must be constructed. Some techniques have been developed to 

solve uncertain optimization problems. The fuzzy and stochastic approaches are normally applied 

to describe imprecise characteristics. In these two types of techniques, the membership function 

and probability distribution play important roles.  

 

This is, however, practically difficult to specify a precise probability distribution or membership 

function for some uncertain parameter. Over the past few decades, the interval number 

programming approach has been developed to deal with such type of problems in which the 

bounds of the uncertain parameters are only required. An optimization problem with interval 

coefficients is referred as the interval-valued optimization problem. In this case, the coefficients 

are assumed as closed intervals. 

 
Charnes et al (1977) proposed a concept to solve the linear programming problems in which the 

constraints are considered as closed intervals. Steuer (1981) developed some algorithms to solve 

the linear programming problems with interval objective function coefficients. Alefeld and 
Herzberger (1983) introduced the concept of computations on interval-valued numbers. 

Ishibuchi and Tanaka (1990), and then Chinneck and Ramadan (2000) proposed the linear 
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programming problem (LPP) with interval coefficients in objective function. Tong (1994) studied 

the interval number and fuzzy number linear programming, and considered the case in which the 

coefficients of the objective function and constraints are all interval numbers. The possible 

interval-solution was obtained by taking the maximum value range and minimum value range 

inequalities as constraint conditions.  

 

 Moore and Lodwick (2003) further extended the theory of interval numbers and fuzzy numbers. 

Mráz (1998) proposed an approach to determine the exact bounds of optimal values in LP with 

interval coefficients. In the interval number programming, the objective function and constraints 

may not always be linear, but are often nonlinear. Levin (1999) introduced the nonlinear 

optimization under interval uncertainty. Sengupta et al (2001) studied the Interpretation of 

inequality constraints involving interval coefficients and a solution to interval linear 

programming.  

 

The optimality conditions of Karush–Kuhn–Tucker (KKT) possess a significant role in 

optimization theory . In literature, various approaches to interval-valued optimization problems 

have been proposed in details, while few papers studied the KKT conditions for interval-valued 

optimization problems. Wu (2007) used the KKT conditions to solve an optimization problem 

with interval-valued objective function. Wu (2008a) studied the interval-valued nonlinear 

programming problems, and then Wu (2008b) & (2010) established the Wolfe duality for 

optimization problems with interval-valued objective functions. Bhurjee and Panda (2012) 

suggested a technique to obtain an efficient solution of interval optimization problem. 

       

In single objective optimization, the aim is to find the best solution which corresponds to the 

minimum or maximum value of a single objective function. As far as the applications of 

nonlinear programming problems are considered, a ratio of two functions is to be maximized or 

minimized under certain number of constraints. In some other applications, the objective function 

involves more than one ratio of functions. The problems of optimizing one or more ratios of 

functions are referred as fractional programming problems. Normally, most of the multi objective 

fractional programming problems are first converted into single objective fractional programming 

problems and then solved. The decision maker (DM) must altogether optimize these conflicting 

goals in a framework of fuzzy aspiration levels. Charnes and Cooper (1962) proposed that a 

linear fractional program with one ratio can be reduced to a linear program using a nonlinear 

variable transformation. Chanas and Kuchta (1996) generalized the solution concepts of the 

linear programming problem with interval coefficients in the objective function based on 

preference relations between intervals.  

 

In the recent years, a kind of new applications of fractional programming was found in inventory 

optimization problems. Sadjadi et al (2005) proposed a fuzzy approach to solve a multi objective 

linear fractional inventory model. They considered two objective functions as fractional with two 

constraints: space capacity constraint, and budget constraint, and aimed to simultaneously 

maximize the profit ratio to holding cost and to minimize the back orders ratio to total ordered 

quantities. Carla Oliveira et al (2007) presented an overview of multiple objective linear 

programming models with interval coefficients. Some applications of multi objective linear 

fractional programming in inventory were proposed by Toksarı (2008). Effati et al (2012) 

presented an approach to solve the interval-valued linear fractional programming problem.  

 

Liu (2006) derived a computational method for the profit bounds of inventory model with 

interval demand and unit cost. Liu and Wang (2007) developed a method for numerical solution 

to interval quadratic programming. Liu (2008) discussed the posynomial geometric programming 

with interval exponents and coefficients. 
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Mishra (2007) studied some problems on approximations of functions in Banach Spaces, and 

then Deepmala (2014) studied the fixed point theorems for nonlinear contractions and its 

applications. Recently, Vandana and Sharma (2015) proposed an EPQ inventory model for 

non-instantaneous deteriorating item under trade credit policy. The concept of fuzzy was also 

used in case of fractional inventory model. Kumar and Dutta (2015) proposed a multi-objective 

linear fractional inventory model of multi-products with price-dependant demand rate in fuzzy 

environment. 

 

This paper aims at extending the application of linear fractional programming to inventory 

optimization problems in interval uncertainty. We consider an interval-valued fractional objective 

function and interval-valued constraints for the proposed inventory problem. The paper is 

organized as follows. Some preliminaries are given in Section 2. In Section 3, the notations and 

assumptions are given. In Section 4, a linear fractional programming inventory problem is 

proposed in crisp sense. In Section 5, we formulate above problem considering interval 

uncertainty. Two numerical examples are solved in Section 6. Finally, we conclude in Section 7.  
 

2. PRELIMINARIES 
 

Interval-Valued Number (Moore & Lodwick (2003)):  
 

Let ∗ ∈ {+, −, ., /} be a binary operation on real line ℜ. Let A and B be two closed intervals. 

Then, a binary operation is defined as 

A ∗ B = {a ∗ b : a ∈ A, b ∈ B} 

In the case of division, it is assumed that 0∉B. The operations on intervals used in this paper are 

defined as: 

 

a)   kA = ����� , ��	
 ;     
� � ≥ 0���	 , ���� ;     
� � < 0�                                                                                                (1)    

               

b) A + B = [�� , �	] + [�� , �	]  

           = [�� + �� , �	 + �	]                                                                                                   (2)   

                                          

c) A − B = [�� , �	] −  [�� , �	]  

           = [�� , �	]+[−�	  ,−��]  

           = [��−�	 , �	−��]                                                                                                       (3)  

                                                  

d) A × B = [min{���� , ���	 , �	�� , �	�	},  max{���� , ���	 , �	��, �	�	}]                           (4) 

 

e) 
�� = A × 

�� = [�� , �	] × [
���, 

���] ,  provided 0 ∉ [��  , �	],  

 

       Alternatively, division of interval numbers can be defined as  

       
�� = 

� � ,   �
��� ,  ��
 = [min{  �  �� ,  �  �� ,    ��� ,  �  �� }, max{  �  �� ,  �  �� ,    ��� ,  �  �� }],                                           (5)     

                      

       Alternatively, division of interval numbers can be defined as  

       
�� = 

� � ,   �
��� ,  ��
 = [
 �  �� ,    ��� ],                     where 0∉B, 0 ≤ �� ≤ �	 , 0 < �� ≤ �	.                       (6)     
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f) ()  = ��� , �	
) = 
*+,
+- �1, 1
 ;                                                                     
�  � = 00��), �	)1;                                               
� �� ≥ 0 or k odd

0�	) , ��)1;                                              
� �	 ≤ 0 or k even
00, max8�9:, �;:<1;  if �� ≤ 0 ≤ �	 , and ��> 0�is even

�                           (7) 

 
Interval-Valued Function: Let ℜ@be an n-dimensional Euclidean space. Then a function 

 �: ℜ@ → B 

 
is called an interval valued function (because ��C� for each x∊ ℜ@ is a closed interval in ℜ). 

Similar to interval notation, we denote the interval-valued function � with 

 ��C� = ����C�, �E�C�
, 
 

where for each x∊ ℜ@,  ���C�, �E�C� are real valued functions defined on ℜ@, called the lower 

and upper bounds of ��C�,  and satisfy the condition: 

 ���C� ≤ �E�C�. 
 

Proposition 1. Let � be an interval valued function defined on ℜ@. Then � is continuous at c ∊ ℜ@ if and only if �� �GH �E are continuous at c. 

 

Definition 1. We define a linear fractional function F(x) as follows:  

 

                                                                    F(x) = 
IJKLMNJKLO                                                                (8) 

 

Where x = �C�, CP, … , C@�R ∊ ℜ@ ,  c = �S�, SP, … , S@� ∊ ℜ@ , d =  �H�, HP, … , H@� ∊ ℜ@ ,  and T�, TP are real scalars. 

 

Definition 2. Let F : V →I be an interval-valued function, defined on a real vector space V. Now, 

we consider the following interval-valued optimization problem 

  

        (IVP)    Min≼  W�C� = [W��C�, WE�C�]             

                              Subject to x ∊ Y ⊆ V,                                                                                       (9) 

 

where Y is the feasible set of problem (IVP) and ≼ is the partial ordering on the set of integers.  

 

Definition 3. Let ≼ be a partial ordering on the set of integers. Then, for � = ���, �E
, and � = ���, �E
, we write  � ≼ �  

if and only if  �� ≤ �� and �E ≤ �E. 

 

This means that � is inferior to � or � is superior to �.  

 

Definition 4. Let F :V →I be an interval-valued function, defined on a real vector space V, and 

let Y be a subset of V. Suppose that we are going to maximize F. We say that F (C̅) is a non-

dominated objective value if and only if there exists no x (≠ C̅) ∊ ] such that F(C̅) ≺ W�C�. 
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Interval-Valued Linear Fractional Programming (IVLFP) 
 

                             Minimize       f(x) = 
IJKLMNJKLO                                                                                   

                             Subject to        Ax = b                                                                          (10) 

                                                       x ≥ 0                          

 

Suppose c = �S�, SP, … , S@� , d =  �H�, HP, … , H@�, where S_, H_ ∊ B,  j = 1,2, ..., n.  

Define  S� = �S��, SP�, … , S@�� , SE = �S�E , SPE , … , S@E�,  H� = �H�� , HP� , … , H@� �, HE = �H�E , HPE , … , H@E�, where S_�, S_E, H_�, H_� are real scalars for j = 1,2, ..., n. Also, T� = �T��, T�E
,  TP = �TP�, TPE
.  
 

Then IVLFP (10) can be re-written as:  

                                        Minimize   f(x) = 
`�J�a�J�  

                            Subject to    Ax = b                                                                               (11) 

                                                               x ≥ 0,                                

 

where p(x) and q(x) are interval-valued linear functions and are given by  

                                        p(x) = [b��C�, bE�C�] = [S�C + T��, SEC + T�E],  

                                        q(x) = [c��C�, cE�C�] = [H�C + TP�, HEC + TPE]. 

 

Therefore, IVLFP (11) can re-written as  

                                        Minimize    f(x) = 
�I�JKLM�,   IdJKLMd
�N�JKLO�,   NdJKLOd
  

                                        Subject to     Ax = b 

                                                               x ≥ 0                                                                              (12)        

 

Further, using the concept of division of two interval-valued numbers, IVLFP (12) can re-written 

as  

                                           Minimize    f(x) =[���C�, �E�C�] 

                               Subject to    Ax = b                                                                            (13) 

                                                                  x ≥ 0                                                                            

 

where ���C� �GH �E�C� are linear fractional functions. 

 

Definition 5. (Wu (2008)) Let C∗ be a feasible solution of IVLFP (13). Then, C∗ is a non-

dominated solution of IVLFP (13) if there exist no feasible solution x such that �(x) ≺ ��C∗�. In 

this case, we say that ��C∗� is the non-dominated objective value of �.  
Corresponding to IVLFP (13)), consider the following optimization problem: 

 

                                                     Minimize  g(x) = ���C� + �E�C� 

                                          Subject to  Ax = b                                                                   (14)                           

                                                                           x ≥ 0                                                                            

 

To solve IVLFP (14), we use the following theorem (Wu (2008)). 

 

Theorem. Wu (2008) If C∗ is an optimal solution of IVLFP(14), then C∗ is a non-dominated 

solution of IVLFP(13). 

 

Proof. Let us refer to Wu(2008). 
 



Operations Research and Applications : An International Journal (ORAJ), Vol.2, No.4, November 2015 

22 

3. NOTATIONS AND ASSUMPTIONS 
 

To develop the proposed model, we considered the following notations and assumptions: 

 
Notations 
 

      λ    : Fixed cost per order       

      B    : Maximum available budget for all products 

     W    : Maximum available space for all products        
     For ith product: (i = 1, 2, …, n)  

     fg    : Ordering quantity of product i,  

    ℎg    : Holding cost per product per unit time for ith product 

     ig    : Purchasing price of ith product 

     jg    : Selling price of i
th
 product 

     kg   : Demand quantity per unit time of ith product 

     �g    : Space required per unit for i
th
 product  

    lmg  : Ordering cost of ith product. 

    

  Assumptions 
 

1.  Multiple products are considered in this model. 

2.  Infinite time horizon is considered. Further, there is only one period in the cycle time. 

3.   Lead time is zero, and so rate of replenishment is infinite. 

4. Holding cost is known and constant for each product.  

5. Demand is taken here as inversely related to the selling price of the product, that is, kg = kg(jg) = n�jgopO, 

            where n� > 0 is a scaling constant, and nP > 1 is price-elasticity coefficient. For 

notational simplicity,  

            we will use kg and kg(jg) interchangeably. 

6. Shortages are not allowed. 

7. Purchase price is constant for each product, i.e. no discount is available. 

 

4. CRISP LINEAR FRACTIONAL PROGRAMMING INVENTORY 
PROBLEM 
 

A multi-product inventory model under resources constraints is introduced as a linear fractional 

programming problem. This model refers to a multi-product inventory problem, with limited 

capacity of warehouse and constraints on investment in inventories. For each product, we impose 

the constraint on ordering cost.  

 

We practically observe the inventory models with more than one objective functions. These 

objectives may be in conflict with each other, or may not be. In such type of inventory models, 

the decision maker is interested to maximize or minimize two or more objectives simultaneously 

over a given set of decision variables. We call this model as linear fractional inventory model.  

Without loss of generality, we assume there is only one period in the cycle time. Then, 

 

                                  Total Profit =  ∑ �jg − ig�fg@gr�                                                                 (15a)       

   

                                Holding cost =  ∑ stutP@gr�                                                                             (15b) 
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                               Ordering cost =  ∑ λvtut
@gr�  = ∑ λpMwtxyO

ut
@gr�                                                    (15c)   

                                                 

                 Back ordered quantity =  ∑ �kg − fg@gr� � =  ∑ �n�jgopO − fg@gr� �                            (15d) 

                                  

                 Total ordered quantity =  ∑ fg@gr�                                                                               (15e) 

 

In this paper, the crisp linear fractional programming inventory model is formulated as  

 

                                     Maximize:   Z  =  
z{|}~ ��{��|�{~���� �{�|  ,  

                                      Subject to,  (i)  Total Budget Limit,  

                                                         (ii)  Storage Space Limit,  

                                                         (iii) Limit on Ordering Cost of Each Product. 

                                                         (iv)  Non-Negative Restriction.               

 

Formulation of Constraints 
 

(i) Total Budget Limit: A budget constraint is all about the combinations of goods and 

services that a consumer may purchase given current prices within his or her given 

income. For the proposed model, the budget constraint is    

                  ∑ igfg@gr�  ≤ �                                                                                              (16a) 

 

(ii) Storage Space Limit:   ∑ �gfg@gr�  ≤ �                                                                   (16b) 

 

(iii) Limit on Ordering Cost of Each Product: We impose the upper limit of ordering 

cost as a constraint. Since lm�, lmP, …, lm@ are the ordering cost of 1st product, 2nd 

product,…, nth product, we can express the concerned constrained as follows:  

 

                                   For first product,    
λvMuM   ≤  lm� 

                                            ⇒    λk� − lm�. f� ≤ 0 

                                   For second product,  
λvOuO   ≤  lmP 

                                            ⇒     λkP − lmP. fP ≤ 0 

                  Similarly, for n
th
 product,  λk@ − lm@. f@ ≤ 0                                                             

                                                           ⇒    λn�j@opO − lm@. f@ ≤ 0                                         (16c) 

                                                  

(iv) Non-Negative Restriction:                   

                 f�,  fP , …, fg ≥ 0                                                                                          (16d) 
 

         

5. INTERVAL-VALUED LINEAR FRACTIONAL PROGRAMMING 

INVENTORY PROBLEM 
 

In real life cases, it is observed that the selling price is uncertain due to dynamic behavior of the 

market. So it may be considered to vary in an interval. Let the selling price be represented by the 

interval [jg�, jgE], where jg� & jgE are the left limit & right limit of interval for jg. 
Mathematically, we can express as 

 

                                       jg = [jg�, jgE], with jg� ≤ jgE                                                               (17) 
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Similarly, the purchasing, holding cost, and demand would be expressed as interval-valued 

numbers as  

                                       ig = [ig�, igE], with ig� ≤ igE                                                                (18) 
       

                                       ℎg = [ℎg�, ℎgE], with ℎg� ≤ ℎgE                                                              (19) 
 

                                       kg = [n�jg�opO, n�jgEopO], with n�jg�opO ≤ n�jgEopO                           (20)   

 

Accordingly, the constraints transform to the interval-valued form as follows     

 

                                    Total Budget Limit:    ∑ �ig� , igE
fg@gr�  ≤ �                                             (21) 

 

                                    Storage Space Limit:      ∑ �gfg@gr�  ≤ �                                                   (22) 

 

                                    Limit on Ordering Cost of each Product:  

 

      For nth product, we have           

                                                  λ�n�j@�opO, n�j@EopO
 ≤ f@[lm@� , lm@E
                                 (23) 

     Non-Negative Restriction:         

                                                      f�, fP , …, fg ≥ 0                                                          (24) 

 

In this case, we define the following interval-valued fuzzy linear fractional programming problem 

for the proposed inventory model, 

 

                                   (IVP1)   Maximize:  Z =  
∑ ��wt�,   wtd
o��t�,   �td
�ut�t�M

 ∑ ��t�,   �td
�tO�t�M
 ,                              (25) 

                                                 Subject to   ∑ �ig� , igE
fg@gr�  ≤ B ,                            

                                                        ∑ �gfg@gr�  ≤  W,                                      

                                                                fg[lmg� , lmgE
 ≥ λ�n�j@�opO, n�j@EopO
, (for i = 1, 2,.., n)     

                                                      and    fg  ≥ 0,  (for i = 1, 2,.., n)                                 

 

Using the arithmetic operations of intervals, the interval-valued fractional objective function can 

be written as 

 

         Z  =  
∑ �wt�o�td,   wtdo�t�
ut�t�M

 ∑ ��t��tO ,   �td�tO 
�t�M      

             = 
�∑ �wt�o�td�ut�t�M ,   ∑ �wtdo�t��ut�t�M 
 

 �∑ �t��tO�t�M ,   ∑ �td�tO�t�M 
    

             = [
∑ �wt�o�td�ut�t�M∑ �td�tO�t�M

, 
∑ �wtdo�t��ut�t�M∑ �t��tO�t�M


 
             = [���f�, fP, … , f@�, �E�f�, fP, … , f@�]                                                                  (26) 

 

        where  ���f�, fP, … , f@�  = 
∑ �wt�o�td�ut�t�M∑ �td�tO�t�M

 ,   

         and     �E�f�, fP, … , f@� = 
∑ �wtdo�t��ut�t�M∑ �t��tO�t�M

                                                                        (27) 

 

Thus the single-objective function consisting of interval-valued number coefficients is 

transformed into multi-objective functions given by (27) where, in each objective function, the 

coefficients are crisp numbers.  Hence, the interval-valued optimization problem (IVP1), 

transforms to following optimization problem as follows,  
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(IVP2) Maximize����f�, fP, … , f@� , �E�f�, fP, … , f@�                                                       (28) 
 

            Subject to ∑ �ig� , igE
fg@gr�  ≤ B ,                             

                 ∑ �gfg@gr�  ≤  W,                                         

            fg[lmg� , lmgE
 ≥ λ�n�jg�opO, n�jgEopO
, (for i = 1, 2,.., n),         

            And  fg ≥ 0,  (for i = 1, 2,.., n).          

                                      

To solution this problem, the techniques of classical linear fractional programming cannot be 

applied if and unless the above interval-valued structure of the problem be reduced into a 

standard linear fractional programming problem.  

 

To deal with interval inequality constraints, we use the Tong’s Approach [Tong (1994) & 

Sengupta et al (2001)]. Tong deals with interval inequality constraints in a separate way.  

 

According to Tong’s Approach, each interval inequality constraint is transformed into 2@K� crisp 

inequalities. Let us take a simple inequality constraint with a single variable:   

 

                                                                      [10, 20]C ≤ [5, 35]. 

 

According to Tong (1994), the interval inequality generates  2�K� crisp inequalities: 

 

                                                                      10C ≤ 5    ⇒  C ≤ 0.5 

                                                                      10C ≤ 35  ⇒  C ≤ 3.5 

                                                                      20C ≤ 5    ⇒  C ≤ 0.25 

                                                                      20C ≤ 35  ⇒  C ≤ 1.75 

 

Hence, the interval-valued linear fractional inventory problem (IVP2) can be transformed to a 

non-interval optimization problem as follows:   

   

                     (IVP3)    Maximize ����f�, … , f@�, �E�f�, … , f@�]                                             (29) 

 

                                                        where   ���f�, fP, … , f@� = 
∑ �wt�o�td�ut�t�M∑ �td�tO�t�M

 

                                                                     �E�f�, fP, … , f@� = 
∑ �wtdo�t��ut�t�M∑ �t��tO�t�M

 

                                                   Subject to:  ∑ ig�fg@gr�  ≤ � 

                                                                      ∑ igEfg@gr�  ≤ � 

                                                                       ∑ �gfg@gr�  ≤ � 

                                                                          lmg�fg ≥ λn�jg�opO , (for i = 1, 2,.., n)     

                                                                          lmgEfg ≥ λn�jg�opO , (for i = 1, 2,.., n)       

                                                                          lmg�fg ≥ λn�jgEopO , (for i = 1, 2,.., n)      

                                                                          lmgEfg ≥ λn�jgEopO, (for i = 1, 2,.., n)     

                                                                                  fg ≥ 0,  (for i = 1, 2,.., n)    

                 

Now, let us write the corresponding optimization problem of (IVP3) as follows: 

 

                      (IVP4)    Maximize g(x) = ���f�, fP, … , f@� + �E�f�, fP, … , f@�                   (30) 
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To solve the (IVP3), theorem (Wu (2008)) is conveniently used. According to this theorem, the 

non-dominated solution of (IVP3), would be determined by solving its corresponding 

optimization problem (IVP4). 
 

6. NUMERICAL EXAMPLES 
      

To illustrate the proposed approach, we solve the following two numerical examples in crisp and 

interval-value cases: 
 

Example1.  Crisp Case   Consider an inventory model with following input data (in proper 

units):  
Table 1: Input data (Crisp Case) 

 

 
 

 

Interval-Values Case   Consider an inventory model with following input data:  

Table 2: Input data (Interval-Valued Case) 
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The corresponding optimization problem would be: 

 

 

Hence, the bounds of profit are 8084.79 (lower bound), and 12355.989 (upper bound). 

 

Example2. Crisp Case   Consider an inventory model with following input data (in proper 

units):  

Table 3: Input data (Crisp Case) 
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Interval-Values Case   Consider an inventory model with following input data: 

Table 4: Input data (Interval-Valued Case) 

 

 

The corresponding optimization problem would be: 

 

 

 

7. CONCLUSIONS 
 

 In this paper, the author presented an approach to solve interval-valued inventory optimization 

problem based on linear fractional programming. The uncertainty in inventory parameters is 

represented by interval-valued numbers. Using interval arithmetic, the interval-valued 

optimization problem is changed into a crisp multi-objective linear fractional programming 

problem. LINGO package is used to solve the subsequent optimization problem. The optimal 

order quantity and profit bounds are determined. 
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For future directions, the paper can be extended to inventory model with shortages case and 

inventory model with price-discount. Moreover, it can also be extended to interval-valued multi-

objective optimization case.      
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