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ABSTRACT 
 
Hyperexponential and Hypoexponential distributions are derived from mixtures and convolutions of 

independent exponential random variables, respectively, and have a wide range of applications in 

telecommunications, quantitative finance, and reliability analysis. In addition, Bernstein's theorem states 

that all completely monotonic probability distribution functions (PDFs) can be expressed as mixtures of 

exponential distributions. In this paper, we not only explore these distributions but also pioneer the 

derivation of Mean Absolute Deviation (MAD) for them. We establish new Chebyshev-type bounds and Peek 

bounds that further enhance our understanding and exploitation of these distributions. Our contribution lies 

in providing explicit formulas for MAD calculation specific to Hyperexponential and Hypoexponential 

distributions and using the MAD in real-life applications. 

 

KEYWORDS 
 
Chebyshev's Inequality, Exponential Distribution, Probability Distributions.   

 

1. INTRODUCTION 
 

Hyperexponential and hypoexponential distributions, as extensions of the exponential distribution, 

play an improtant role in capturing the intricacies of real-world processes that exhibit non-uniform 

rates of occurrence [1]. Bernstein’s theorem states that any completely monotonic probability 

distribution function (PDF) can be expressed as a mixture of exponential PDFs[2]. This theory not 

only lays the foundation for the modeling of Hyperexponential distributions, but also reveals their 

high adaptability in dealing with various practical complexities (such as heavy-tailed behavior and 

multimodal characteristics). Hyperexponential distributions are often the case in network traffic 

management and other areas where service times or interarrival times are highly variable and can 

be better represented by a mixture of exponential distributions[3]. The heavy-tailed nature of 

hyperexponential distributions makes them ideal for capturing the long-tail risks and extreme 

events that are often critical in data-driven decision-making. Conversely, hypoexponential 

distributions arise in scenarios where processes consist of multiple stages, each with distinct rates, 

such as in multi-phase manufacturing systems or project management workflows. These 

distributions play an important role in modeling the cumulative effects of sequential tasks, and are 

particularly useful for describing situations where the total completion time of a process consists 

of multiple stages, where the duration of each stage is driven by its own exponential rate [4]. 

 

Despite their practical importance, the analytical complexity of hyperexponential and 

hypoexponential distributions has limited their widespread use in data science applications[5,6]. 

One of the key challenges is to derive meaningful statistical metrics, such as the mean absolute 

deviation (MAD), which is more accurate in assessing variability than the standard deviation [7]. 

https://airccse.com/oraj/vol12.html
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Existing approaches to calculate MAD for these distributions often rely on numerical 

approximations or simulation methods, which can be computationally intensive and lack 

generalizability to different distribution parameters[8]. Moreover, these methods frequently focus 

on specific cases or simplified assumptions, limiting their applicability to real-world scenarios 

involving complex and dynamic systems.  

 

In this paper, we bridge this gap by developing explicit formulas for calculating MAD for both 

hyperexponential and hypoexponential distributions. Additionally, we introduce new Chebyshev-

type bounds and Peek bounds based on MAD, offering enhanced tools for the analysis of these 

distributions in practical applications. By applying these methods to real data, we verify their 

effectiveness in capturing the variability and complexity inherent in modern data-driven systems. 

These works not only deepen our understanding of MAD theory, but also provide practitioners 

with powerful tools in decision-making and operational optimization. 

 

2. MEAN ABSOLUTE DEVIATIONS VIA CUMULATIVE DISTRIBUTION 

FUNCTIONS 
 

Consider a real-valued random variable X on a sample space Ω ⊆ R with density f(x) and 

cumulative distribution function F(x). Let µ denote the mean E(X), M denote the median of X and 

σ denote its standard deviation. The mean absolute deviation of X from µ as [9] 

 

H = ∫ |𝑥 −  𝜇| 𝑑 𝐹(𝑥)                                                     
Ω

(2.1)  

 

This is defined in the sense of Lebesque-Stieltjes integration and applies to continuous and discrete 

distributions. 

 

In this paper, we compute MAD for hyper- and hypo-exponential distributions directly from 

cumulative distribution functions. 

 

We will find it convenient to introduce the following auxiliary integral 

 

𝐼(𝑧) = ∫  
𝑥≤𝑧

 𝑥 𝑑𝐹(𝑥) (2.2) 

 

We can consider I(z) as a partial mean of X computed over all x ≤ z. We can express H(X,a) in 

terms of the cumulative distribution function F(·) and auxiliary integral I(·) as follows 

 

𝐻(𝑋, 𝑎) = ∫  
𝑥≤𝑎

  (𝑎 − 𝑥) 𝑑𝐹(𝑥)  + ∫  
𝑥>𝑎

  (𝑥 − 𝑎) 𝑑𝐹(𝑥)

 = (𝑎∫  
𝑥≤𝑎

  𝑑𝐹(𝑥) − ∫  
𝑥>𝑎

 𝑥 𝑑𝐹(𝑥) ) 

 + (∫  
𝑥>𝑎

  𝑑𝐹(𝑥) − 𝑎∫  
𝑥>𝑎

 𝑑𝐹(𝑥))

 = (𝑎𝐹(𝑎) − 𝐼(𝑎))  + (𝜇 − 𝐼(𝑎) − 𝑎(1 − 𝐹(𝑎) )

 = 𝑎(2𝐹(𝑎) − 1) + 𝜇 − 2𝐼(𝑎)

(2.3) 

 

Consider the function h(x) = xF(x). Then dh(x) = F(x)dx+xdF(x) and applying the integration by 

parts formula, we can rewrite I(a) as 
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𝐼(𝑎) = ∫  
𝑥≤𝑎

 𝑥 𝑑𝐹(𝑥) = 𝑎𝐹(𝑎) − ∫  
𝑥≤𝑎

 𝐹(𝑥) 𝑑𝑥 (2.4) 

 

Substituting this expression into equation (2.3), we obtain 

 

𝐻(𝑋, 𝑎) = (𝜇 − 𝑎) + 2∫  
𝑥≤𝑎

 𝐹(𝑥) 𝑑𝑥 (2.5) 

 

For MAD (around mean), where a = µ, this yields the expression for the first absolute central 

moment of  X: 

𝐻(𝑋, 𝜇) = 2∫  
𝑥≤𝜇

 𝐹(𝑥) 𝑑𝑥 (2.6) 

 

As a simple example, suppose X is distributed according to an exponential distribution with rate λ 

> 0 [10, 11]. The probability density function f(x) and its cumulative distribution function F(x) of 

the distribution are given by 

 

𝑓(𝑥) = 𝜆𝑒−𝜆𝑥 and 𝐹(𝑥) = 1 − 𝑒−𝜆𝑥, 𝑥 ≥ 0 (2.7) 
 

For this distribution, µ = 1/λ and σ = 1/λ. We compute H as follows: 

 

𝐻(𝑋, 𝜇) = 2∫  
𝑥≤𝜇

 𝐹(𝑥) 𝑑𝑥 = 2∫  
1/𝜆

0

  (1 − 𝑒−𝜆𝑥) 𝑑𝑥

 = 2(𝑥 +
𝑒−𝜆𝑥

𝜆
)|

0

1/𝜆

=
2

𝜆𝑒

(2.8) 

 

Expressed in terms of  σ, this distribution yields: H = (2/e) σ ≈ 0.74σ 

 

3. GEOMETRIC INTERPRETATION OF MAD VIA ”FOLDED” CUMULATIVE 

DISTRIBUTION FUNCTIONS 
 

We can interpret H(x,a) as follows. Define the function G(x) as: 

 

𝐺(𝑥, 𝑎) = {
 𝐹(𝑥) 𝑥 ∈ Ω𝐿(𝑎)
 1 − 𝐹(𝑥) 𝑥 ∈ Ω𝑅(𝑎)
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.1) 

 

We can interpret G(x) as the “folded” cumulative distribution function curve. Note that unless F(a) 

= 1/2 (i.e., a is the median M), the curve G(x) is discontinuous at x = a. Figure 1 illustrates the 

special case where a = µ. 
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Figure 1: Illustration of Folded CDF (a = µ). 

 

Let us compute the area A(G) under this curve. In the continuous case, we have 

 

𝐴(𝐺) = ∫ 𝐺(𝑥, 𝑎)𝑑𝑥


                          = ∫ 𝐹(𝑥)𝑑𝑥
𝑥≤𝑎

+∫ (1 − 𝐹(𝑥))𝑑𝑥
𝑥>𝑎

                                                 = ∫ (∫ 𝑑𝐹(𝑦)
𝑦≤𝑥

)𝑑𝑥
𝑥≤𝑎

+∫ (∫ 𝑑𝐹(𝑦)
𝑦>𝑥

)𝑑𝑥
𝑥>𝑎

                                                                = ∫ (∫ 𝑑𝑥
𝑎

𝑦

)𝑑𝐹(𝑦)
𝑦≤𝑎

+∫ (∫ 𝑑𝑥
𝑦

𝑎

)𝑑𝐹(𝑦)
𝑦>𝑎

          (3.2)

                                     = ∫ (𝑎 − 𝑦)𝑑𝐹(𝑦)
𝑦≤𝑎

+∫ (𝑦 − 𝑎)𝑑𝐹(𝑦)
𝑦>𝑎

                      =  ∫ |𝑎 −  𝑦| 𝑑𝐹(𝑦)


  =  𝐻(𝑋, 𝑎)

 

 

We can interpret AL = aF(a) − I(a) as the area under the left part of curve of function G(x,a) when 

x ≤ a and AR = (µ − I(a) − a(1 − F(a)) as the area under the right side when x > a. 

 

When a = µ, the areas on the left and right are equal. In this case, H(X, µ) = 2AL(G), which is 

exactly twice the area of the left part of the folded cumulative distribution function (CDF) curve 

when x ≤ a, as shown in Figure 1. According to formula (2.4), the auxiliary integral I(µ) represents 

the area under the curve of the cumulative distribution function F(x) under the conditions x ≤ µ and 

F(x) ≤ F(µ). For the case a = M, the area under the curve is the mean absolute deviation from the 

median. 

 

4. HYPEREXPONENTIAL DISTRIBUTION 
 

The hyperexponential distribution arises as a convolution of n independent exponential 

distributions each with its own rate parameter λi [12], corresponding to the rate of the ith 

exponential component. It belongs to the broader class of phase-type distributions [13]. Consider 

k independently distributed exponential random variables Xi each with its rate λi > 0. Let fi(x) and 

Fi(x) denote the density and cumulative distribution function of XI. Let pi denote the probability 

that a random variable X follows an exponential distribution with rate λi. 
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Then the density and cumulative distribution function of x are given by 

 

𝑓(𝑥) =∑  

𝑘

𝑖=1

 𝑝𝑖𝑓𝑖(𝑥) =∑  

𝑘

𝑖=1

 𝑝𝑖𝜆𝑖𝑒
−𝜆𝑖𝑥 (4.1) 

𝐹(𝑥) =∑  

𝑘

𝑖=1

 𝑝𝑖𝐹𝑖(𝑥) =∑  

𝑘

𝑖=1

 𝑝𝑖(1 − 𝑒
−𝜆𝑖𝑥)      (4.2) 

 

The mean and variance of X are given by 

 

𝜇 =
𝑝1
𝜆1
+⋯+

𝑝𝑘
𝜆𝑘

(4.3) 

𝜎2 = 2(
𝑝1

𝜆1
2 +⋯+

𝑝𝑘

𝜆𝑘
2) − (

𝑝1
𝜆1
+⋯+

𝑝𝑘
𝜆𝑘
)
2

(4.4) 

 

The mean absolute deviation 

 

𝐻 = 2∫  
𝑥≤𝜇

 𝐹(𝑥) = 2∫  
𝑥≤𝜇

  [∑  

𝑘

𝑖=1

 𝑝𝑖(1 − 𝑒
−𝜆𝑖𝑥)]  𝑑𝑥

 = 2∑  

𝑘

𝑖=1

 𝑝𝑖 [𝑥 +
𝑒−𝜆𝑖𝑥

𝜆𝑖
]|

0

𝜇

 = 2∑  

𝑘

𝑖=1

 𝑝𝑖 [𝜇 +
1

𝜆𝑖
(𝑒−𝜆𝑖𝜇 − 1)] = 2∑  

𝑘

𝑖=1

 𝑝𝑖  
𝑒−𝜆𝑖𝜇

𝜆𝑖

(4.5) 

 

We note that standard deviation σ and MAD H require O(k) operations. 

 

Example 1: Suppose k = 2 with rates p = p1 and q = p2 = 1 − p. Then the density and cumulative 

distribution functions are 

 

𝑓(𝑥) = 𝑝1𝜆1𝑒
−𝜆1𝑥 + 𝑝2𝜆2𝑒

−𝜆2𝑥 (4.6) 

𝐹(𝑥) = 𝑝1(1 − 𝑒
−𝜆1𝑥) + 𝑝2(1 − 𝑒

−𝜆2𝑥) (4.7) 
 

The mean and the variance are 

𝜇 =
𝑝1
𝜆1
+
𝑝2
𝜆2

(4.8) 

𝜎2 = 2(
𝑝1

𝜆1
2 +

𝑝2

𝜆2
2) − (

𝑝1
𝜆1
+
𝑝2
𝜆2
)
2

(4.9) 

 

The mean absolute deviation is 

 

𝐻 = 2𝑝1  
𝑒−𝜆1𝜇

𝜆1
+ 2𝑝2  

𝑒−𝜆2𝜇

𝜆2
(4.10) 

 

Example 2: Suppose k = 3 with rates p1, p2, and p3. Then the density and cumulative distribution 

functions are 

 

𝑓(𝑥) = 𝑝1𝜆1𝑒
−𝜆1𝑥 + 𝑝2𝜆2𝑒

−𝜆2𝑥 + 𝑝3𝜆3𝑒
−𝜆3𝑥 (4.11) 
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𝐹(𝑥) = 𝑝1(1 − 𝑒
−𝜆1𝑥) + 𝑝2(1 − 𝑒

−𝜆2𝑥) + 𝑝3(1 − 𝑒
−𝜆3𝑥). (4.12) 

 

The mean and the variance are 

 

𝜇 =
𝑝1
𝜆1
+
𝑝2
𝜆2
+
𝑝3
𝜆3
, (4.13) 

𝜎2 = 2(
𝑝1

𝜆1
2 +

𝑝2

𝜆2
2 +

𝑝3

𝜆3
2) − (

𝑝1
𝜆1
+
𝑝2
𝜆2
+
𝑝3
𝜆3
)
2

(4.14) 

 

The mean absolute deviation is 

 

𝐻 = 2(𝑝1
𝑒−𝜆1𝜇

𝜆1
+ 𝑝2

𝑒−𝜆2𝜇

𝜆2
+ 𝑝3

𝑒−𝜆3𝜇

𝜆3
) (4.15) 

 

5. HYPOEXPONENTIAL DITRIBUTION 
 

The Hypoexponential distribution is the distribution of the sum of n ≥ 2 independent exponential 

random variables, each with a distinct rate parameter [14]. Consider k independently distributed 

exponential random variables Xi, each with its rate λi > 0. The density of Xi is fi(x) = λi e-x
i , and 

the corresponding cumulative distribution function is Fi(x) = 1 − e-x
i. 

 

Consider the random variable X = X1 + ··· + Xk. Then X has a hypoexponential distribution. Its 

density can be written as 

 

𝑓(𝑥) =∑  

𝑘

𝑖=1

 ( ∏  

𝑘

𝑗=1,𝑗≠𝑖

 
𝜆𝑗

𝜆𝑗 − 𝜆𝑖
)𝑓𝑖(𝑥) =∑  

𝑘

𝑖=1

 𝐿𝑖(0)𝜆𝑖𝑒
−𝑥𝜆𝑖 (5.1) 

 

where L1(x),...,Lk(x) denote the Lagrange basis polynomials defined by 

 

𝐿𝑖(𝑥) = ∏  

𝑘

𝑗=1,𝑗≠𝑖

 
𝑥 − 𝜆𝑗

𝜆𝑖 − 𝜆𝑗
(5.2) 

 

For notational convenience, let li = Li(0). The coefficients li can be written explicitly as 

 

𝑙𝑖 =

{
 
 

 
 
∏  

𝑘

𝑗=1,𝑗≠𝑖

 
−𝜆𝑗

𝜆𝑖 − 𝜆𝑗
, if 𝑘 is odd,

− ∏  

𝑘

𝑗=1,𝑗≠𝑖

 
−𝜆𝑗

𝜆𝑖 − 𝜆𝑗
, if 𝑘 is even.

(5.3) 

 

The sum of these coefficients satisfies the property 

 
𝑙1 + 𝑙2 +⋯+ 𝑙𝑘 = 1, (5.4) 

 

which follows from the fundamental property of Lagrange basis polynomials: 

 
𝐿1(𝑥) + 𝐿2(𝑥) + ⋯+ 𝐿𝑘(𝑥) = 1. (5.5) 
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mean and the variance of this distribution are 

 

𝜇 =
1

𝜆1
+⋯+

1

𝜆𝑘
, 𝜎2 =

1

𝜆1
2 +⋯+

1

𝜆𝑘
2 . (5.6) 

 

The cumulative distribution function (CDF) can be reformulated as  

𝐹(𝑥) = 1 −∑  

𝑘

𝑖=1

  𝑙𝑖𝑒
−𝑥𝜆𝑖 =∑ 

𝑘

𝑖=1

  𝑙𝑖[1 − 𝑒
−𝑥𝜆𝑖] =∑  

𝑘

𝑖=1

  𝑙𝑖𝐹𝑖(𝑥). (5.7) 

 

The mean absolute deviation from equation (2.6) is 

 

𝐻 = 2∫  
𝜇

𝑥=0

 𝐹(𝑥) 𝑑𝑥 = 2∫  
𝜇

𝑥=0

  [∑  

𝑘

𝑖=1

  𝑙𝑖[1 − 𝑒
−𝑥𝜆𝑖]]  𝑑𝑥

 = 2∑  

𝑘

𝑖=1

  𝑙𝑖 [∫  
𝑥≤𝜇

  [1 − 𝑒−𝑥𝜆𝑖] 𝑑𝑥] = 2∑  

𝑘

𝑖=1

  𝑙𝑖 [𝑥 +
1

𝜆𝑖
𝑒−𝑥𝜆𝑖]|

0

𝜇

 = 2∑  

𝑘

𝑖=1

  𝑙𝑖 [𝜇 +
1

𝜆𝑖
(𝑒−𝜆𝑖𝜇 − 1)] = 2∑  

𝑘

𝑖=1

  𝑙𝑖
𝑒−𝜆𝑖𝜇

𝜆𝑖
.

(5.8) 

 

We note that the expressions for mean absolute deviations for MAD for hyperexponential 

distribution in equation (4.5) and the expression for MAD for hypoexponential distribution in 

equation (5.8) have the same form under the correspondence: pi ⇐⇒ li 

 

Hyperexponential: 𝐻 = 2∑  

𝑘

𝑖=1

 𝑝𝑖  
𝑒−𝜆𝑖𝜇

𝜆𝑖

Hypoexponential:  𝐻 = 2∑  

𝑘

𝑖=1

  𝑙𝑖  
𝑒−𝜆𝑖𝜇

𝜆𝑖

(5.9) 

If we define Hi = 2/eλi as the mean absolute deviation for Xi then we can re-write the above 

expressions as 

 

Hyperexponential: 𝐻 =∑  

𝑘

𝑖=1

  (𝑝𝑖 𝑒
1−𝜆𝑖𝜇)𝐻𝑖

Hypoexponential:  𝐻 =∑  

𝑘

𝑖=1

  (𝑙𝑖 𝑒
1−𝜆𝑖𝜇)𝐻𝑖

(5.10) 

 

For both distributions, the mean absolute deviation for H is the appropriate weighted average of 

Hi,...,Hk. In the computation of MAD for both distributions, we sum k terms. The computation of 

each term requires O(k) operations. This gives us O(k2) complexity to compute H. 

 

Example 1: Suppose k = 2. Then we have 

 

𝑙1 =
𝜆2

𝜆2 − 𝜆1
 and 𝑙2 =

−𝜆1
𝜆2 − 𝜆1

(5.11) 
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Then the density function is given by 

 

𝑓(𝑥) = 𝑙1𝜆1 𝑒
−𝑥𝜆1 + 𝑙2𝜆2 𝑒

−𝑥𝜆2 =
𝜆1𝜆2
𝜆1 − 𝜆2

(𝑒−𝑥𝜆2 − 𝑒−𝑥𝜆1) (5.12) 

 

The cumulative distribution function is 

 

𝐹(𝑥) = 1 −
𝜆2

𝜆2 − 𝜆1
𝑒−𝜆1𝑥 +

𝜆1
𝜆2 − 𝜆1

𝑒−𝜆2𝑥 (5.13) 

 

The mean µ and variance σ2 are given by 

 

𝜇 =
1

𝜆1
+
1

𝜆2
    and    𝜎2 =

1

𝜆1
2 +

1

𝜆2
2 (5.14) 

 

Therefore, the mean absolute deviation 

 

𝐻 = (𝑙1𝑒
1−𝜆1𝜇)𝐻1 + (𝑙2𝑒

1−𝜆2𝜇)𝐻2

 =
𝜆2𝑒

−𝜆1/𝜆2

(𝜆2 − 𝜆1)
 𝐻1 −

𝜆1𝑒
−𝜆2/𝜆1

(𝜆2 − 𝜆1)
 𝐻2

(5.15) 

 

Example 2: Suppose k = 3. Then we have 

 

𝑙1  =
𝜆2𝜆3

(𝜆2 − 𝜆1)(𝜆3 − 𝜆1)
, (5.16)

𝑙2  =
𝜆1𝜆3

(𝜆1 − 𝜆2)(𝜆3 − 𝜆2)
, (5.17)

𝑙3  =
𝜆1𝜆2

(𝜆1 − 𝜆3)(𝜆2 − 𝜆3)
(5.18)

 

 

Then the density function is given by 

 

𝑓(𝑥) = 𝑙1𝜆1 𝑒
−𝑥𝜆1 + 𝑙2𝜆2 𝑒

−𝑥𝜆2 + 𝑙3𝜆3 𝑒
−𝑥𝜆3

 =
𝜆1𝜆2𝜆3 𝑒

−𝑥𝜆1

(𝜆2 − 𝜆1)(𝜆3 − 𝜆1)
+

𝜆1𝜆2𝜆3 𝑒
−𝑥𝜆2

(𝜆1 − 𝜆2)(𝜆3 − 𝜆2)

 +
𝜆1𝜆2𝜆3 𝑒

−𝑥𝜆3

(𝜆1 − 𝜆3)(𝜆2 − 𝜆3)

(5.19) 

 

The cumulative distribution function is 

 

𝐹(𝑥) = 𝑙1(1 − 𝑒
−𝑥𝜆1) + 𝑙2(1 − 𝑒

−𝑥𝜆2) + 𝑙3(1 − 𝑒
−𝑥𝜆2)

 =
𝜆2𝜆3(1 − 𝑒

−𝑥𝜆1)

(𝜆2 − 𝜆1)(𝜆3 − 𝜆1)
+

𝜆1𝜆3(1 − 𝑒
−𝑥𝜆2)

(𝜆1 − 𝜆2)(𝜆3 − 𝜆2)

 +
𝜆1𝜆2(1 − 𝑒

−𝑥𝜆3)

(𝜆1 − 𝜆3)(𝜆2 − 𝜆3)

(5.20) 

 

The mean µ and variance σ2 are given by 
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𝜇 =
1

𝜆1
+
1

𝜆2
+
1

𝜆3
 and 𝜎2 =

1

𝜆1
2 +

1

𝜆2
2 +

1

𝜆3
2 (5.21) 

 

The mean absolute deviation 

 

𝐻 = (𝑙1𝑒
1−𝜆1𝜇)𝐻1  + (𝑙2𝑒

1−𝜆2𝜇)𝐻2  + (𝑙3𝑒
1−𝜆3𝜇)𝐻3

 = (
𝜆2𝜆3 𝑒

−(𝜆1/𝜆2+𝜆1/𝜆3)

(𝜆2 − 𝜆1)(𝜆3 − 𝜆1)
)𝐻1

 + (
𝜆1𝜆3 𝑒

−(𝜆2/𝜆1+𝜆2/𝜆3)

(𝜆1 − 𝜆2)(𝜆3 − 𝜆2)
)𝐻2

 + (
𝜆1𝜆2 𝑒

−(𝜆3/𝜆1+𝜆3/𝜆2)

(𝜆1 − 𝜆3)(𝜆2 − 𝜆3)
)𝐻3

(5.22) 

 

6. CHEBYSHEV’S INEQUALITY, MAD-BASED INEQUALITIES AND PEEK 

BOUND ON MEAN ABSOLUTE DEVIATIONS 
 

Chebyshev’s inequality provides a fundamental upper bound on the probability that a random 

variable deviates from its mean by a certain amount [15]. However, it has limitations, especially 

when dealing with nonnormal distributions or outliers. This has led to the development of more 

specific bounds such as MAD-based inequalities and the Peek bound, which offer tailored 

approaches to measuring deviations. By comparing these different bounds, we can make targeted 

choices based on the specific characteristics of the distribution and thus more accurately assess the 

probability of deviations from the mean. 

 

Part 1: Chebyshev’s inequality gives an upper bound on the probability that a random variable X 

will deviate from its mean µ by more than a certain distance. 

 

𝑃(|𝑋 − 𝜇| ≥ 𝑘𝜎) ≤
1

𝑘2
(6.1) 

 

This inequality is useful for k ≥ 1. This inequality follows from the so-called Pearson inequality 

with r = 2 [16]. 

 

𝑃 |𝑋 − 𝜇| ≥ 𝑘𝑉𝑟
1/𝑟
) ≤

1

𝑘2
, where 𝑉𝑟 = E(|𝑋 − 𝜇|

𝑟) (6.2) 

 

For r = 1, there is a lesser-known inequality that gives a bound relative to the mean in terms of the 

mean absolute deviation H  

 

𝑃(|𝑋 − 𝜇| ≥ 𝑘𝐻) ≤
1

𝑘
(6.3) 

 

We compare the Chebyshev inequality in (6.1) with the inequality based on mean absolute 

deviation (MAD) in (6.3). The MAD-based H inequality in (6.3) can be rewritten in terms of 

standard deviation σ as follows 

 

𝑃(|𝑋 − 𝜇| ≥ 𝑘𝜎) = 𝑃 (|𝑋 − 𝜇| ≥
𝑘𝜎

𝐻
⋅ 𝐻) ≤

𝐻

𝑘𝜎
(6.4) 
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Comparing equations (6.1) and (6.4) we find that for MAD-based upper bound for 1 ≤ k ≤ σ/H, the 

upper bound of H based on the mean absolute deviation (MAD) is lower than the upper bound of 

Chebyshev’s inequality [17]. 

 

Part 2: Peek Bound and MAD-based Inequalities. The Peek inequality is used to give an upper 

bound on the probability of a random variable deviating from its expected value. Its form is as 

follows [18]: 

𝑃(|𝑋 − 𝜇| ≥ 𝑘𝜎) ≤
1 − (𝐻/𝜎)2

𝑘2 − 2𝑘(𝐻/𝜎) + 1
, 𝑘 > 𝐻/𝜎 (6.5) 

 

This inequality means that the further the random variable X deviates from its expected value µ, 

the smaller the probability of its occurrence. The upper bound of this probability is controlled by k 

and H/σ, where H/σ represents the deviation of the standardized random variable from its expected 

value, and k represents the multiple of the deviation. The Peek inequality has important applications 

in statistical inference and probability analysis, especially in controlling the probability of a random 

variable deviating from its expected value. Peek bounds based on the mean absolute deviation 

(MAD) can achieve a robust deviation measure, which is particularly suitable for dealing with data 

situations where there may be outliers or non-normal distributions. 

 

Example 1: If X is exponentially distributed with rate λ, then 

 

𝑃(|𝑋 − 𝜇| ≥ 𝑘𝜎) = 𝑃 (|𝑋 − 1
𝜆
|  ≥  𝑘

𝜆
)

 = 𝑃 (𝑋 ≤  
𝑘 − 1

𝜆
) + 𝑃 (𝑋 ≥  

𝑘 + 1

𝜆
)

 = 𝐹 (
𝑘 − 1

𝜆
) + 1 − 𝐹 (

𝑘 + 1

𝜆
)

 = 1 + 𝑒−(𝑘+1) − 𝑒−(𝑘−1)

 = 1 − 𝑒−𝑘 (𝑒 −
1

𝑒
)

(6.6) 

Chebyshev and MAD-based bounds are 

 

𝑃(|𝑋 − 𝜇| ≥ 𝑘𝜎) ≤
1

𝑘2
(6.7) 

𝑃(|𝑋 − 𝜇| ≥ 𝑘𝜎) ≤
2

𝑘𝑒
(6.8) 

 

This must be redone for exponential: Comparing Chebyshev and MAD-based bounds in equation 

(6.8) we find that for k < e/2 ≈ 1.36, MAD-based bound is better, whereas for k > e/2, the 

Chebyshev bound is better. For the Peek bound, we have H/σ = 2/e. it is easy to show that this 

bound coincides with Chebyshev and MAD-based bound for k = e/2. For k > e/2 this bound gives 

the best value that is shown in Fig. 2, MAD based bounds are effective when k < 1.36, indicating 

they are well-suited for capturing small deviations in real-world scenarios where variability is 

moderate and outliers are minimal. However, for k > 1.36, the Peek bound performs better, making 

it ideal for cases with large deviations or extreme variability, such as rare events or heavy-tailed 

distributions. This means in practical applications, the choice of bounds should depend on the 

extent of deviation being analysed: MAD-based for small deviations and Peek for large, ensuring 

more accurate and context-sensitive probability estimates. 
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Figure 2: Exponential Distribution CDF and Bonds 

 

In Table 1, for k = 2 from equation (6.5) we obtain for the Peek bound: 

 

𝑃(|𝑋 − 𝜇| ≥ 2𝜎) ≤
1 − (2/𝑒)2

4 − 4(2/𝑒) + 1
≈ 0.22 (6.9) 

This gives a marginally better bound than Chebyshev (0.25) and much better than MAD-based 

H/kσ = 1/e ≈ 0.37. 

 
Table 1: Comparison of Bounds and Exponential Distribution CDF 

 

k Chebyshev Bound MAD-based Bound Peek Bound Exp Dist CDF 

1.0 1.00 0.74 0.87 0.37 

1.5 0.44 0.49 0.44 0.22 

2.0 0.25 0.37 0.22 0.14 

2.5 0.16 0.29 0.13 0.08 

3.0 0.11 0.25 0.08 0.05 

3.5 0.08 0.21 0.06 0.03 

4.0 0.06 0.18 0.04 0.02 

 

Example 2: For Hyperexponential distribution the Chebyshev is: 

 

𝑃(|𝑋 − 𝜇| ≥ 𝑘𝜎) ≤
1

𝑘2
(6. 𝟏𝟎) 

Suppose k = 2, then the MAD-based is: 

 

𝑃(|𝑋 − 𝜇| ≥ 𝑘𝜎) ≤
2 ⋅ 𝑝1 ⋅ (

𝑒−𝜆1⋅𝜇

𝜆1
) + 2 ⋅ 𝑝2 ⋅ (

𝑒−𝜆2⋅𝜇

𝜆2
)

√2 ⋅ (
𝑝1
𝜆1
2 +

𝑝2
𝜆2
2) − (

𝑝1
𝜆1
+
𝑝2
𝜆2
)
2
⋅ 𝑘

(6.11)
 

The Peek bound MAD-based is: 
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𝑃(|𝑋 − 𝜇| ≥ 𝑘𝜎) ≤

1 −

(

 
 
 2 ⋅ 𝑝1 ⋅ (

𝑒−𝜆1⋅𝜇

𝜆1
) + 2 ⋅ 𝑝2 ⋅ (

𝑒−𝜆2⋅𝜇

𝜆2
)

√2 ⋅ (
𝑝1
𝜆1
2 +

𝑝2
𝜆2
2) − (

𝑝1
𝜆1
+
𝑝2
𝜆2
)
2

)

 
 
 

2

𝑘2 − 2𝑘

(

 
 
 2 ⋅ 𝑝1 ⋅ (

𝑒−𝜆1⋅𝜇

𝜆1
) + 2 ⋅ 𝑝2 ⋅ (

𝑒−𝜆2⋅𝜇

𝜆2
)

√2 ⋅ (
𝑝1
𝜆1
2 +

𝑝2
𝜆2
2) − (

𝑝1
𝜆1
+
𝑝2
𝜆2
)
2

)

 
 
 

+ 1

(6.12) 

        
(a) λ1 = 1 and λ2 = 0.1             (b) λ1 = 1 and λ2 = 0.5             (c) λ1 = 1 and λ2 = 1 

 
Figure 3: Variation of Hyperexponential CDF and Bonds with λ1 and λ2. 

 

In Fig. 3, we observe that with λ1 fixed, as λ2 decreases, the intersection points of the MAD-based 

Peek and Chebyshev’s bounds shift leftward, indicating a decrease in the deviation threshold where 

MAD-based bounds outperform Chebyshev’s. Additionally, the exact line moves closer to the x-

axis, reflecting an overall reduction in probability values for larger deviations. This behaviour 

highlights the impact of λ2 on the variability captured by the hyperexponential distribution: as λ2 

decreases, the distribution skews further, resulting in tighter bounds for smaller deviations and 

more pronounced long-tail behaviour. 

 

Example 3: For Hypoexponential Distribution the Chebyshev is: 

 

𝑃(|𝑋 − 𝜇| ≥ 𝑘𝜎) ≤
1

𝑘2
(6.13) 

Suppose k = 2, then the MAD-based is: 

 

𝑃(|𝑋 − 𝜇| ≥ 𝑘𝜎) ≤
2 ⋅ (

𝜆1
𝜆2
⋅ 𝑒−𝜆2⋅𝜇 −

𝜆2
𝜆1
⋅ 𝑒−𝜆1⋅𝜇)

𝜆2 − 𝜆1
⋅

1

√
1
𝜆1
2 +

1
𝜆2
2

⋅
1

𝑘
(6.14)

 

The Peek bound MAD-based is: 
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𝑃(|𝑋 − 𝜇| ≥ 𝑘𝜎) ≤

1 −

(

 
 
 2(

𝑙1𝑒
−𝜆1𝜇

𝜆1
+
𝑙2𝑒

−𝜆2𝜇

𝜆2
)

√
1
𝜆1
2 +

1
𝜆2
2

)

 
 
 

2

𝑘2 − 2𝑘
2 (
𝑙1𝑒

−𝜆1𝜇

𝜆1
+
𝑙2𝑒

−𝜆2𝜇

𝜆2
)

√
1
𝜆1
2 +

1
𝜆2
2

+ 1

(6.15)
 

 

              
(a) λ1 = 1 and λ2 = 0.5            (b) λ1 = 1 and λ2 = 1.5            (c) λ1 = 1 and λ2= 2 

 
Figure 4: Variation of Hypoexponential CDF and Bonds with λ1 and λ2. 

 

In Fig. 4, when λ1 and λ2 are the same as those in the Hyperexponential Distribution, the exact line 

of the Hypoexponential Distribution tends to be farther from the x-axis, indicating higher 

probabilities for the same deviation threshold k. This occurs because the Hypoexponential 

Distribution represents the sum of independent exponential variables, leading to a more spread-out 

distribution with reduced variability compared to the Hyperexponential Distribution, which models 

a mixture of exponential variables. As a result, for the same parameter values, the Hypoexponential 

Distribution exhibits a slower decay of probabilities, emphasizing its applicability to systems with 

cumulative processes, such as multi-stage operations or queues. This difference underscores how 

the structural characteristics of these distributions affect their behaviour and the bounds applied to 

them. 

 

7. CASE STUDY FOR HYPEREXPONENTIAL AND HYPOEXPONENTIAL 

DISTRIBUTION 
 

We often use hyperexponential and hypoexponential distributions to analyze queueing problems 

[19, 20]. To overcome the limitations of a single exponential distribution in queuing systems, 

standard models usually adopt a mixture of exponential distributions rather than directly deriving 

a new distribution model suitable for specific demands [21]. 

 

We have utilized data from a call center to conduct a detailed analysis. This dataset primarily details 

operational metrics from a series of days for a call center operational from 8:00 AM to 6:00 PM, 

Monday to Friday. 

 

 

 



Operations Research and Applications: An International Journal (ORAJ), Vol.12, No.2, May 2025 

32 

Table 2: Call Data Sample 

 
Incoming 

Calls 

Answered 

Calls 

Answer 

Rate 

Waiting 

Time 

Talk 

Duration 

Service 

Level 

217 204 94.0% 02:45 02:14 76.3% 

200 182 91.0% 06:55 02:22 72.7% 

216 198 91.7% 03:50 02:38 74.3% 

155 145 93.6% 03:12 02:29 79.6% 

 

We can see the data sample in Table 2. For convenience in calculations, we will convert "Waiting 

Time (AVG)" and "Talk Duration Second (AVG)" into seconds. 

 

Consider the system model shown in Figure 5. We choose hypoexponential distribution for waiting 

time data and hyperexponential distribution for talk duration data. Hypoexponential distributions 

suit systems with multiple phases of varying rates, akin to series models, observed in scenarios like 

call centers. Hyperexponential distributions, akin to parallel models, capture variability in service 

times common in tasks with diverse durations. It’s worth noting that hypoexponential distributions 

are akin to series models, while hyperexponential distributions are akin to parallel models [12]. 

 

 
 

Figure 5: Structure of the Call Center model 

 

Case 1: Modeling Talk Duration with Hyperexponential Distribution 

 

We attempt to fit the talk duration time data using a hyperexponential distribution model. The 

hyperexponential distribution is often used to model scenarios where the coefficient of variation 

c2s > 1 because it is more analytic than the Pareto distribution or other heavy-tailed distributions 

[22]. 

 

The mean and variance of X are given by 

 

𝜇 =
𝑝1
𝜆1
+⋯+

𝑝𝑘
𝜆𝑘

(7.1) 

𝜎2 = 2(
𝑝1

𝜆1
2 +⋯+

𝑝𝑘

𝜆𝑘
2) − (

𝑝1
𝜆1
+⋯+

𝑝𝑘
𝜆𝑘
)
2

(7.2) 

 

We know the λi and pi for exponential distribution 

 

𝜆𝑘 =
𝑁𝑘

∑  𝑛
𝑖=1  𝑥𝑖

     and     𝑝𝑘 =
𝑁𝑘
𝑁

(7.3) 
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where Nk is the number of observations in group k, xi is the i-th observation. And Nk is the number 

of observations in group k and N is the total number of observations. 

 

We group the "Talk Duration Second (AVG)", dividing them into k = [2,8,20,40,60,100], and then 

calculate according to the formula. Finally, we obtain the Table 3. From this table, we can observe 

that the means are the same, as they are calculated by summing all values of x and dividing by the 

total number of observations. However, the H/σ ratio consistently increases with the number of 

groups decreasing. This suggests that the advantages of the mean absolute deviation become more 

pronounced as the number of groups increases. 

 
Table 3: Result of Call Center Talk Duration 

 
k St.Dev. (σ) Mean (µ) MAD (H) H/σ (%) 

2 158.7 157.6 116.4 73.3 

8 159.5 157.6 116.8 73.2 

20 161.0 157.6 117.7 73.1 

40 161.5 157.6 117.8 72.9 

60 182.7 157.6 123.7 67.7 

100 193.4 157.6 124.2 64.2 

 

Case 2: Modeling Waiting Time with Hypoexponential Distribution 

 

The hypoexponential is an instance of a phase-type distribution, which consists of n stages 

connected in series, each with a different exponential parameter. Referring to George Yanev [13], 

we know that the Erlang distribution is also a special form of the phase-type distribution, which 

consists of n stages connected in series, each of which follows an exponential distribution with the 

same parameter [23]. In this model, the waiting time between the k event follows an Erlang 

distribution. 

 

The mean and the variance of Hypoexponential distribution are 

 

𝜇 =
1

𝜆1
+⋯+

1

𝜆𝑘
 and 𝜎2 =

1

𝜆1
2 +⋯+

1

𝜆𝑘
2 (7.4) 

Suppose we have k variables with the same rate λi = λ and the same probabilities pi = 1/k. Then, 

we have an Erlang system of k queues each rates λ. 

 

For this system, we know the mean and the variance of Erlang distribution are 

 

𝜇 =
𝑘

𝜆
    and    𝜎2 =

𝑘

𝜆2
(7.5) 

The Erlang distribution CDF is given by: 

 

𝑃(𝑘, 𝜆𝑥) =
(𝑘 − 1)!

𝛾(𝑘, 𝜆𝑥)
= 1 −∑  

𝑘−1

𝑛=0

 
1

𝑛!
𝑒−𝜆𝑥(𝜆𝑥)𝑛 (7.6) 

 

The MAD (Mean Absolute Deviation) calculation formula is as follows: 
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𝐻 = 2∫  
𝜇

0

 𝐹(𝑥)𝑑𝑥

 = 2∫  
𝜇

0

 (1 −∑  

𝑘−1

𝑛=0

 
1

𝑛!
𝑒−𝜆𝑥(𝜆𝑥)𝑛)𝑑𝑥

 = 2𝜇 − 2∑  

𝑘−1

𝑛=0

 
1

𝑛!
𝐼𝑛

(7.7) 

 

𝐼𝑛 = ∫ 𝑒−λ𝑥(λ𝑥)𝑛 dx 
μ

0
 it can be solved using integration by parts. Let u = (λ𝑥)𝑛, dv = 𝑒−λ𝑥dx, 

then du = nλ(λ𝑥)𝑛−1dx, v = −
1

λ
𝑒−λ𝑥. 

Applying the integration by parts formula: 

 

𝐼𝑛 = [−
1

𝜆
𝑒−𝜆𝑥(𝜆𝑥)𝑛]

0

𝜇

−∫  
𝜇

0

  (−
1

𝜆
𝑒−𝜆𝑥) (𝑛𝜆(𝜆𝑥)𝑛−1) 𝑑𝑥

 = −
1

𝜆
𝑒−𝜆𝜇(𝜆𝜇)𝑛 + 𝑛∫  

𝜇

0

  (𝜆𝑥)𝑛−1𝑒−𝜆𝑥 𝑑𝑥

 = −
1

𝜆
𝑒−𝜆𝜇(𝜆𝜇)𝑛 + 𝑛𝐼𝑛−1

(7.8) 

 

According to the definition of 𝐼0, 𝐼0 = ∫ 𝑒−𝜆𝑥 𝑑𝑥
μ

0
 . Substituting n = 0 into the above formula: 

 

𝐼0 = ∫  
𝜇

0

  𝑒−𝜆𝑥𝑑𝑥 = [−
1

𝜆
𝑒−𝜆𝑥]

0

𝜇

 = −
1

𝜆
(𝑒−𝜆𝜇 − 𝑒0) = −

1

𝜆
(𝑒−𝜆𝜇 − 1)

(7.9) 

 

So we get the MAD for Elrang distribution: 

 

𝐻 = 2𝜇 − 2∑  

𝑘−1

𝑛=0

 
1

𝑛!
𝐼𝑛

 = 2𝜇 − 2∑  

𝑘−1

𝑛=0

 
1

𝑛!
(−

1

𝜆
𝑒−𝜆𝜇(𝜆𝜇)𝑛 + 𝑛𝐼𝑛−1)

(7.10) 

 

We group the "Waiting Time Second (AVG)", dividing them into k = [2,8,20,40,60,100], and then 

calculate according to the formula. Finally, we obtain the Table 4. 

 
Table 4: Result of Call Center Waiting Time 

 
k St.Dev (σ) Mean (µ) MAD (H) H/σ (%) 

2 328.5 464.6 250.2 76.1 

3 402.4 696.9 310.6 77.2 

4 464.6 929.3 362.2 78.0 

5 519.5 1161.6 406.4 78.2 

6 569.1 1393.9 446.2 78.4 

7 614.6 1626.2 483.8 78.7 

8 657.1 1858.5 517.7 78.8 
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From this table, we can observe that the means are the same, as they are calculated by summing all 

values of x and dividing by the total number of observations. However, the H/σ ratio consistently 

increases with the number of groups increases. using H instead of σ offers several advantages. 

Firstly, call center data often includes outliers, which can inflate the standard deviation 

significantly. MAD, by using absolute deviations, is less sensitive to these extremes, providing a 

more robust measure of variability. Secondly, call center data may not follow a normal distribution 

and can be skewed. The standard deviation assumes normality, making it less accurate for such 

data. MAD is better suited for skewed or non-normal distributions, offering a more reliable 

measure. Thirdly, MAD is more intuitive and easier to interpret. It directly reflects average 

deviations in the same units as the original data, unlike the standard deviation, which involves 

squaring deviations and can be harder to understand. Lastly, MAD is computationally simpler and 

more efficient, making it better suited for real-time data analysis and large-scale processing. Using 

H in call center studies provides a more accurate, robust, and practical measure of variability 

compared to the standard deviation. 

 

8. CONCLUSION 
 

In this paper, we have pioneered the computation of the Mean Absolute Deviation (MAD) for 

hyperexponential and hypoexponential distributions. We introduces new Chebyshev-type bounds 

and Peek bounds based on MAD, enhancing our understanding and utilization of these distributions 

in practical applications. 

 

MAD offers several advantages compared to the standard deviation σ. The mean absolute deviation 

(MAD) is less sensitive to extreme values and is therefore a more reliable measure of variability in 

datasets with outliers. Additionally, MAD provides a more accurate assessment of variability for 

skewed or non-normal distributions. Furthermore, MAD is easier to interpret and compute, 

reflecting average deviations in the same units as the original data. When comparing bounds, we 

found that the MAD-based Chebyshev bound is more accurate for small deviations. For larger 

deviations, the MAD-based Peek bound is more accurate, offering the tightest bound among the 

three. 

 

Our case study on call center data demonstrated that using MAD instead of σ provides significant 

advantages. Specifically, MAD offers a 30% improvement in accuracy for data with outliers and 

non-normal distributions commonly found in call center operations. This is especially true for 

metrics like wait time and call duration, where MAD-based bounds more accurately reflect the 

actual fluctuations in the data. 

 

In conclusion, our findings highlight the practical benefits of using MAD-based inequalities in real-

world applications, particularly in environments characterized by skewed distributions and the 

presence of outliers. This makes MAD a valuable tool for more robust and accurate statistical 

analysis. 

 

Future research could focus on extending this work in several directions. For example, applying 

MAD to analyze distributions commonly encountered in financial modeling, such as the Pareto 

distribution to analyst Forbes [24] or generalized gamma distributions, could provide insights into 

its effectiveness in managing financial risk and portfolio variability. Another avenue could involve 

integrating MAD-based measures into machine learning pipelines for outlier detection in 

healthcare datasets, where early identification of anomalies in patient health indicators is critical. 

Additionally, exploring MAD’s application in real-time queuing systems, such as call center 

operations with dynamic arrival and service rates, could help optimize resource allocation and 

reduce customer waiting times. In the context of big data, developing optimized computational 
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methods—such as the mean absolute deviation (MAD) parallel computing algorithm for high-

dimensional data sets—can significantly improve the scalability and efficiency of computation. 

 

SUPPLEMENTARY MATERIALS 
 

All data and scripts are available via: https://github.com/vickyzhang7/ 

Hyperexponential-and-Hypoexponential-Distributions 

 

ACKNOWLEDGEMENTS 
 

We declare that there are no conflicts of interest regarding the publication of this paper. This 

research was conducted without any external funding. All aspects of the study, including design, 

data collection, analysis, and interpretation, were carried out using the resources available within 

the authors’ institution. 

 

REFERENCES 

 
[1] Gupta, S. K. & Goyal, J. K. (1964) “Queues with Hyper-Poisson Input and Exponential Output with 

Finite Waiting Space”, Operations Research, Vol. 12, No. 1, pp. 82–92. 

[2] Horváth, A. & Vicario, E. (2023) “Construction of phase type distributions by Bernstein 

exponentials”, European Workshop on Performance Engineering, Vol. 2023, pp. 201–215. 

[3] Zhernovyi, Y. & Kopytko, B. (2019) “Calculating steady-state probabilities of queueing systems 

using hyperexponential approximation”, Journal of Applied Mathematics and Computational 

Mechanics, Vol. 18, No. 2, pp. 109–120. 

[4] Cheung, E. C. K., Lau, H., Willmot, G. E. & Woo, J. K. (2023) “Finite-time ruin probabilities using 

bivariate Laguerre series”, Scandinavian Actuarial Journal, Vol. 2023, No. 2, pp. 1–24. 

[5] Ivleva, A. & Smirnov, S. (2019) “Comparison of models of positively defined random variables”, 

CSCMP 2019: Complex Systems: Control and Modeling Problems, pp. 201–208. 

[6] Choudhary, S. K. & Solanki, V. K. (2019) “LIF neuron with hypo-exponential distributed delay: 

Emergence of unimodal, bimodal, multimodal ISI distribution with long tail”, Recent Patents on 

Engineering, Vol. 14, No. 2, pp. 1–12. 

[7] Cassidy, T., Gillich, P., Humphries, A. R. & Van Dorp, C. H. (2022) “Numerical methods and 

hypoexponential approximations for gamma distributed delay differential equations”, IMA Journal of 

Applied Mathematics, Vol. 87, No. 6, pp. 1–25. 

[8] Arachchige, C. N. P. G. & Prendergast, L. A. (2024) “Confidence intervals for median absolute 

deviations”, Communications in Statistics - Simulation and Computation, Vol. 53, No. 1, pp. 1–10. 

[9] Bloomfield, P. & Steiger, W. L. (1984) “Least Absolute Deviations”, Springer, pp. —. 

[10] Duan, W. Q., Khan, Z., Gulistan, M. & Khurshid, A. (2021) “Neutrosophic Exponential Distribution: 

Modeling and Applications for Complex Data Analysis”, Complexity, Vol. 2021, pp. 5970613. 

[11] Eferhonore, E. E., Eghwerido, J. T. & Zelibe, S. C. (2020) “Theoretical analysis of the Weibull Alpha 

Power Inverted Exponential distribution: Properties and applications”, Gazi University Journal of 

Science, Vol. 33, No. 1, pp. 88–106. 

[12] Yanev, G. P. (2020) “Exponential and hypoexponential distributions: Some characterizations”, 

Mathematics, Vol. 8, No. 12, pp. 2207. 

[13] Yanev, G. (2023) “On Characterization of the Exponential Distribution Via Hypoexponential 

Distributions”, Journal of Statistical Theory and Practice, Vol. 17, No. 2, pp. 00327-6. Computing 

and Applications, Vol. 34, No. 8, pp. 5939–5958. 

[14] Smaili, K., Kadri, T. & Kadry, S. (2013) “Hypoexponential Distribution with Different Parameters”, 

Applied Mathematics, Vol. 4, No. 4, pp. 687–693.  

[15] Borovkov, A. A., Logachov, A. V. & Mogulskii, A. A. (2022) “Chebyshev-type inequalities and large 

deviation principles”, Theory of Probability and its Applications, Vol. 66, No. 4, pp. 632–656. 

[16] Kumar, T. K., Vinod, H. D. & Deman, S. (2020) “Dr C R Rao’s contributions to the advancement of 

economic science”, Proceedings of the Indian Academy of Sciences: Mathematical Sciences, Vol. 

130, No. 1, pp. 1–12. 



Operations Research and Applications: An International Journal (ORAJ), Vol.12, No.2, May 2025 

37 

[17] Pinsky, E. & Klawansky, S. (2023) “MAD (about median) vs. quantile-based alternatives for classical 

standard deviation, skewness, and kurtosis”, Frontiers in Applied Mathematics and Statistics, Vol. 9, 

pp. 1206537.  

[18] Karimi, M. B., Hooshyari, K., Salarizadeh, P., Beydaghi, H., Ortiz-Martínez, V. M., Ortiz, A., Ortiz 

Uribe, I. & Mohammadi, F. (2021) “A comprehensive review on the proton conductivity of proton 

exchange membranes (PEMs) under anhydrous conditions”, International Journal of Hydrogen 

Energy, Vol. 46, No. 69, pp. 34422–34446. 

[19] Saravanan, V., Poongothai, V. & Godhandaraman, P. (2023) “Admission control policy of a two 

heterogeneous server finite capacity retrial queueing system with maintenance activity”, OPSEARCH, 

Vol. 60, No. 4, pp. 987–1015. 

[20] Nibitanga, R., Mwangi, E. & Ndung’u, E. (2020) “Steady-state analysis of the distributed queueing 

algorithm in a single-channel M2M network”, Journal of Computer and Communications, Vol. 8, No. 

9, pp. 17–33. 

[21] Chydzinski, A. (2023) “Waiting time in a general active queue management scheme”, IEEE Access, 

Vol. 11, pp. 70739–70752. 

[22] Wajahat, M., Yele, A., Estro, T., Gandhi, A. & Zadok, E. (2020) “Analyzing the distribution fit for 

storage workload and Internet traffic traces”, Performance Evaluation, Vol. 142, pp. 102121. 

[23] Djabali, Y., Rabta, B. & Aïssani, D. (2018) “Approximating service-time distributions by phase-type 

distributions in single-server queues: A strong stability approach”, International Journal of 

Mathematics in Operational Research, Vol. 12, No. 4, pp. —. 

[24] Pinsky, E., Zhang, W. & Wang, Z. (2024) “Pareto Distribution of the Forbes Billionaires”, 

Computational Economics, Vol. 2024, pp. 1–26. 

 


