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ABSTRACT 

 
Seymour [4] conjectures that if the k-flow problem with demands at the sink nodes has a solution then there 

is a ½-integer-valued solution.  In this paper we present a counterexample obtained by combining two 

elements of the Graver test set. 

 

1. INTRODUCTION 
 
In [4] the k-flow problem is stated as follows: Suppose G = (V, E) is a graph, F ⊆ E, each e∈E–F 

has a capacity w(e) (integer-valued) and each f∈F has a demand q(f) (integer-valued).  When 

does there exist, for each f∈F, a flow fΘ  in (V, E-F) between the ends of f and of value q(f), 

such that ∀ e∈E-F, )()( ewe
Ff f ≤Θ∑ ∈

?  The conjecture in [4] is: For any G, F, q and w, if 

the flows fΘ (f ∈F) exist at all, then they can always be chosen ½-integer-valued.  (F is the set 

of the sink-source edges, and is only necessary to ensure that Kirchoff’s Law (refer [2]) also 

holds at the sinks and sources.) 

 

Graver test set was developed to understand the nature of integer linear programming problems 

(refer [1]).  These test sets allow repeated search for improved solutions through the interior of 

the feasible region.  The structure of the test sets also sheds light on the nature of the solution 

(refer [3]). 

 

We present a counterexample to this conjecture by constructing two elements of the Graver test 

set (refer [1]) for the 5-commodity flow problem.    While proving our result, we present some of 

the structure of the k-flow problem by an analysis of the test sets. 

 

2. GRAPH G AND THE 5-FLOW 
   
Consider the graph G in Figure 1.  Labels ±1, ±2, ±3 and ±4 are repeated twice indicating that the 

nodes represented by each of these labels must be identified as one node.  The capacity of each of 

the displayed edges is 1.  The sink-source edges -1.1, -2.2, -3.3, -4.4 and -5.5 have not been 

shown but the demand of each of the first 4 edges is 2 while the demand for -5.5 is 1.  The 

commodities are represented by X, Y, U, V and Z respectively. 

 

One solution � is presented in Figure 1 itself, where X, Y, U and V take ¼-integer values on 

some edges.  We will show that though the 5-flow commodity problem on G has a solution there 

is no ½-integer-valued solution. 
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3. Definitions, Notations and Observations 
 

Note 1: The k-flow problem has 2 sets of constraints – Kirchoff’s Law and the capacity 

constraints.  An implicit constraint is that along any sink-source edge f ∈F, the flow of any 

commodity other than the corresponding commodity equals 0. 

 

The capacity constraints may be replaced by ∀ e∈E-F, )())(( ewef
Ff

≤±∑ ∈
.    

For the 5-commodity flow problem, this is equivalent to: 

  

∀ e∈E-F,  )()()()()()( eweVeUeZeYeX ≤±±±±± .  

 
[1] defines the Support of a k-flow as those expressions on the left-hand side of the capacity 

constraints that are non-zero.  We can consider a subset of these expressions for the Support by 

dropping those expressions where the coefficient of any one commodity, say the first commodity, 

is -1, as these are redundant.  For example, in the 2-flow problem, if X(e)+Y(e) is non-zero so is 

(–X(e)-Y(E)).  Let S be the set of expressions in the left hand side of the capacity constraints 

excluding the expressions with -1 as the coefficient of the first commodity.  Note that 

FES
F

−=
−

*2
1

 

 

Definitions: Adapting the definitions in [1] to the k-flow problem: 

 

1. The Support of a k-flow Θ is defined as SuppΘ ={ }0,: ≠∈ sSss . 

2. A k-flow Θ is Minimal if SuppΘ is a minimal subset in {Supp ,0: ≠ΩΩ Ω is an integral k-

flow} and Θ is not an integral multiple of any other integral k-flow.  The set of minimal flows 

forms the test set. 

 

For the 5-commodity flow, it is sufficient to examine )()()()()( eVeUeZeYeX ±±±± .  

 

Note 3: Consider a 3-flow Θ.  To compute Supp Θ  we need to analyze the four expressions

( ) )(eZYX ±± for every edge e. 

 

For any edge e: 

• If exactly 2 of these expressions equal 0, then one of X, Y or Z equals 0 on edge e.  The 

remaining commodities have equal flow, and depending on the 2 expressions, these 2 

commodities flow in the same direction or opposite directions on e. 

• If 3 of these expressions equal 0, then the 4
th
 is 0 and there is no flow on e. 

• If all 4 expressions equal 0, there is no flow on e. 

• If exactly one expression equals 0, then the sum of 2 of the commodities equals the third and 

depending on the expression, this sum (taken as a 1-commodity flow) and the 3
rd

 commodity 

flow in the same direction or opposite directions on e. 

• Nothing can be said if no expression equals 0. 

 

Notation: In graph G, let V1 be the set of nodes labeled 6 through 17 together with }5,2,1{ ±±±  

and let V2 be the set of nodes labeled 18 through 29 with }5,2,1{ ±±± .   Let φ1 be  

4Φ restricted to the graph G1=(V1, E1) and φ2 be 4Φ restricted to the graph G2=(V2, E2). Note that 

φ1 and φ2 are integral 3-flows and Φ� = �1/4∗(φ1+φ2).  We will show that φ1 and φ2 are
 
minimal 

3-flows. 
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Note 4: The following three sets are cuts in G1.   

C1 = {2.9, -1.8, 15.14, 14.13, 13.12} separating {1, -2} from {-1, 2}  

C2 = {16.8, 16.17, 9.17, 1.15, -2.12} separating {1, -2} from {-1, 2}  

C3 = {16.17, 2.13, 1.15, 9.10, 9.8} separating {1, 2} from {-1, -2} 

 

Note 5: In [3] it has been shown that the only minimal 2-flows that do not increase the flows in 

the sink-source edges are 2-flows along elementary cycles. 

For example, the elementary cycles in G1 are 8.9.10.12.13.14.15.7.8, 

8.16.17.9.10.12.13.14.15.7.8, 8.16.17.9.8.  The minimal flows are 1 unit of X and Y respectively 

flowing in the same direction or opposite directions in each of these cycles.  

  

4.The Counter Example 
 

Theorem 1:  Φ = 1/4∗(φ1+φ2) and φ1 and φ2 are
 
minimal 3-flows. 

   

Proof: By construction it is clear that φ1 and φ2 are
 
3-flows and �Φ = 1/4∗(φ1+φ2).  We will show 

that φ1 is a minimal flow.  Since G and Φ is symmetric with respect to (X,Y) and (U,V), it will 

follow that φ2 is also a minimal flow.   

 

Suppose φ1 is not minimal.  By Theorem 3.12 of [1], φ1 = ∑ αi
�
��� vi, where 

1. The vi are distinct minimal 3-flows 

2. Each vi is compatible with φ1.  That is, for each edge e and each vi, ( ) )(eZYX ±± has the 

same sign as φ1.  In other words, on each edge e, ( ) )(eZYX ±± taken as a 1-flow flows in 

the same direction for all vi and φ1.    

3. Supp vi ⊂Supp φ1 

4. Each αi is positive 

 

Since Z = ½ on the edge 5.6 in φ1, at least one vi has Z flowing on 5.6.  Let this minimal flow be 

denoted by θ.   

By Kirchoff’s Law and the construction of G1, this Z flow in θ must return along 5.-5.  That 

means there is a Z flow in 5.6.7 and 10.11.-5.  On the other hand, because of Kirchoff’s Law and 

the fact that X(-5.5) = Y(-5.5) = 0 neither X nor Y can flow in any of the edges in 5.6.7 or 10.11.-

5.  Therefore Supp θ = Supp φ1 on 5.6.7 and 10.11.-5.  Since θ is compatible with φ1, Z flows 

from 5 to 7 and 10 to -5 in θ.…................................…(1) 

 

Consider all the edges above or below the path 7.8.9.10.  On these edges, either 0=±+ ZYX  

or 0=±− ZYX  for φ1, and therefore for θ.  This implies that for θ, Z = 0 in all these edges.  

Therefore, in θ, Z flows only in 5.6.7.8.9.10.11.-5 from 5 to -5.  

.…………………………………..…………………………………...………………….(2) 

 

Consider the edge 8.16.  Since 0=±+ ZYX in φ1, the same is true for θ.  If either of 

0=±− ZYX  equals 0 in θ, then by Note 3, nothing will flow in this edge.  Therefore for θ and 

this edge, either Suppθ = Suppφ1 or nothing flows.  If there is 0-flow in 16.8, then X = 0 in 16.17 

since X cannot flow in 16.-2.2.  This implies Y = 0 in 16.17 otherwise Suppθ ⊃ Suppφ1on 16.17.  

This implies that Y = 0 in 9.17 which implies X = 0 in this edge.  Using similar arguments for the 

other edges in path 8.16.17.9, we see that on 8.16.17.9, either Suppθ = Suppφ1 orθ = 0.   

Similarly for the path 10.12.13.14.15.7, Suppθ = Suppφ1 orθ = 0.   
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If θ is 0 on 10.12.13.14.15.7, then X = Y = 0 in this path, and, since X and Y cannot flow in -5.5, 

X = Y = 0 in the edges 7.8 and 9.10.  Since Z flows in these two edges, this implies that Suppθ ⊄

Suppφ1!  Therefore θ is not 0 on 10.12.13.14.15.7 and Suppθ= Suppφ1 on 

10.12.13.14.15.7……………………………………………………………..(3) 

 

Suppose θ = 0 in 8.16.17.9.  For θ, (X+Y-Z) = 0 on the edges 7.8 and 9.10 since this equation 

holds for φ1.  By (2), a non-zero Z flows from 7 to 8 and from 9 to 10.  This implies that (X+Y) 

taken as a 1-flow, must flow from 7 to 8 and from 9 to 10.  On the other hand, on edge 8.9, Z 

flows from 8 to 9 and (X+Y+Z) = 0.  This implies that (X+Y) must flow from 9 to 8.  If θ is 0 in 

8.16.17.9 then Kirchoff’s Law w.r.t (X+Y) is violated at nodes 8 and 9.  Therefore Supp θ = Supp 

φ1 on the path 8.16.17.9……………..........(4) 

  

We now show Supp θ = Supp φ1 on the path 7.8.9.10.  By (2), (3) and the fact that θ is compatible 

with φ1, equal volumes, say q, of X and Y flow from 15 to 7 and from 10 to 12 respectively.  

Since these flows cannot flow to 6 from 7 or from 11 to 10, these q units of X and Y flow from 7 

to 8 and from 9 to 10.  Since (X+Y-Z) = 0 on 7.8 and 9.10 in φ1and therefore in θ, by (2) Z = 2q 

from 7 to 10.  Therefore on 7.8 and 9.10, Supp θ = Supp φ1.  On 8.9, (X+Y+Z) = 0 for φ1 and θ, 

and 2qZ flows from 8 to 9.  For Supp θ� to be a proper subset of Supp φ1 on 8.9, Note 3 requires 

exactly 2q units of either X or Y must flow from 9 to 8.  Consider the vertex 9 and (X+Y) as a 

single flow.  (X+Y) = 0 on 9.17 (since it is 0 in φ1), 2q from 9 to 10 (since X = Y = q) and 2q 

from 9 to 8.  Therefore there is a 4q (X+Y) flow from 2 to 9 which is a Y-flow since only Y flows 

on 2.9.  Of this 4q units of Y, q units flow from 9 to 10.  Suppose 2q units of Y flows from 9 to 8 

(and therefore X = 0 on this edge).  In which case, the remaining q units of Y flow along 9.17.16.  

Since Supp θ = Supp φ1 on the path 8.16.17.9, q units of X also flows from 17 to 16 (originating 

from 1.17).  This q units of X continues from 16 to 8.  On the other hand, the 2 q units of Y from 

9 to 8 combines with the q units of Y from 7 to 8 to form 3 q units of Y flowing from 8 to 16.  

This implies Supp θ ≠Supp φ1 on 8.16, contradicting (4).  Similarly X = 2q from 9 to 8 requires 

X = 3q from 17 to 9 which requires Y = 3q from 9 to 17 to 16 which requires X = 3q from 17 to 

16 to 8.  But from 8 to 16 there is only q units of Y flowing from 7 to 8 to 16 contradicting Supp 

θ = Supp φ1 on the path 8.16.17.9.  Therefore both X and Y flow from 8 to 9 and Supp θ = Supp 

φ1 on the 

8.9.……………………………………………………………….………………..….….(5) 

 

Consider the edge 1.15.  We know that only X and Y flow in the path 7.15.14.13.12.10.  Since 

Supp θ = Supp φ1� on 7.15.14.13.12.10, taking (X+Y) as a 1-flow, (X+Y) = 0 on 14.15 and 

(X+Y) ≠ 0 on 15.7.  This implies that there is flow in 1.15.  Since only X can flow in 1.15, Supp

θ = Supp φ1 on 1.15.  Similarly we can show that Suppθ = Supp φ1 on all edges emanating from 

a source or a sink…………………...……...…..………...…..(6) 

 

Hence Suppθ = Supp φ1 on G1.  This implies there is no integral 3-flow in G1 with support 

properly contained in 1φ .  Theorem 1 follows. 

Theorem 2: No solution exists where all flows take integer or ½-integer values. 

Proof: Suppose there exists another solution Φ* where all the flows are ½-valued. 

 

In Φ*, Z cannot flow from 5 to -5 on any path different from that in Φ.  Suppose not: 

• If Z flows in 5.6.7.15.14.13.12.10.11.-5 with volume 1 or ½ (by assumption), the capacity of 

the cut C1 = {2.9, -1.8, 15.14, 14.13, 13.12} separating {1, -2} from {-1, 2} is 2 or 3.5.  By 

the Max Flow Min Cut Theorem, Φ* is sub-optimal.   
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• If Z flows in 5.6.7.8.16.17.9.10.11.-5 with volume 1 or ½, the capacity of the cut C2 = {16.8, 

16.17, 9.17, 1.15, -2.12} separating {1, -2} from {-1, 2} is 2 or 3.5.  By the Max Flow Min 

Cut Theorem, Φ* is sub-optimal.   

Similarly we can prove that in Φ* Z cannot flow in the paths 5.18.19.27.26.25.24.22.23.-5 and 

5.18.19.20.28.29.21.22.23.-5. 

 

In Φ*, ½ unit of Z flows in 5.6.7.8.9.10.11.-5 and 5.18.19.20.21.22.23.-5.  Suppose not: 

• If Z is greater than ½ in 5.6.7.8.9.10.11.-5, the capacity of the cut C3 = {16.17, 2.13, 1.15, 

9.10, 9.8} separating {1, 2} from {-1, -2} is less than 4, and by Max Flow Min Cut Theorem, 

any XY-flow is < 4.     

Similarly one can show that Z cannot be greater than ½ in 5.18.19.20.21.22.23.-5. 

 

Since 1 unit of Z flows from 5 to -5, the Z flow in Φ* is identical to the Z flow in Φ.   

 

In Φ*, 0 units of U/V flow in G1 and 0 units of X/Y flow in G2.   

Suppose U flows in G1.  By assumption, U = 0, ½ or 1 in G1.  The proof for the paths 

5.6.7.15.14.13.12.10.11.-5 and 5.6.7.8.16.17.9.10.11.-5 are identical to the case for the Z flow.  

For the path 5.6.7.8.9.10.11.-5, since ½ unit of Z is already flowing in this path, U must also 

equal ½ in these edges and the entire path 5.6.7.8.9.10.11.-5 is saturated.  Then the cut C3 = 

{16.17, 2.13, 1.15, 9.10, 9.8} separating {1, 2} from {-1, -2} has capacity = 3.  In which case Φ* 

is sub-optimal.  We may similarly prove for the other commodities. 

 

Therefore we have for Φ*: 

1. ½ unit of Z flows in each of 5.6.7.8.9.10.11.-5 and 5.18.19.20.21.22.23.-5. 

2. (X,Y) is restricted to G1 and (U,V) is restricted to G2.  

We want to show that the flows of X,Y,U and V cannot be 0, ½ or 1 on every edge. 

 

Consider the unit X flow in 1.15.  Suppose: 

1. At vertex 15, 1 unit of X flows to 7: This flow must continue from 7 to 8.  Which is impossible 

since ½ unit of Z already flows in 7.8 and the capacity of 7.8 is 1. 

2. At vertex 15, 1 unit of X flows to 14: Then the 1 unit of Y flow in 2.13 must flow to 12 to -2.  

Therefore both 14.15 and 12.13 are saturated.  Then the unit X and Y flows in edges 1.17 and 

2.9 respectively, must flow in the subgraph defined by {7, 8, 9, 10, 16, 17, 2,1 ±± }.  But the 

cut {8.9, 16.17} separates {1, 2} from {-1, -2} in this subgraph and has capacity 1.5 since ½ 

unit Z flows in 8.9 making Φ* is sub-optimal. 

3. At vertex 15, ½ unit of X flows to 7 (and the other to 14): This flow must continue through 7.8 

where ½ Z also flows.  This means that 7.8 is saturated.  Then the 1 unit of Y flow in 2.13 

must flow to 12 to -2.  As above, this forces Φ* to be sub-optimal  

Therefore in the edges of 7.14.15, X cannot be 0, ½ or 1.  And hence the theorem. 

 

Corollary 3: If Φ* is another solution, then Φ*-Φ is a sum of minimal circular 2-flows. 

Proof: By Theorem 2 Φ*-Φ comprises two 2-flows – a (X,Y) restricted to G1 and a (U,V) 

restricted to G2 with no flow in the sink-source edges.  By Theorem 3.1.2 [1], Φ*-Φ is the sum of 

minimal flows.  Note 5 shows that these minimal flows are minimal circular 2-flows. 

 

 

 
 



Operations Research and Applications: An International Journal (ORAJ), Vol. 1, No. 1, August 2014 

 
14 

 

 

References 
 
[1] Jack E. Graver, “On the foundations of linear and integer linear programming”, Math. Prog. (9) 2 

(1975) 207-226. 

[2] T.C. Hu, Integer Programming and Network Flows, Addison-Wesley, Reading, Massachusetts 

(1969). 

[3] Shekhar Rajagopalan, Multicommodity Flow Problem, PhD Dissertation, Syracuse University [1988].   

[4] P.D. Seymour, “On odd cuts and plane multicommodity flows”, Proc. London math Soc. (3) 42 

(1981) 178-192. 

 


