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ABSTRACT 

 
Empirical Mode Decomposition (EMD) is a tool for the analysis of multi-component signals. The EMD 

algorithm decomposes adaptively a given oscillation modes namely the functions of intrinsic mode (IMFs) 

extracted from the signal itself signal. The analysis method is no need for a basic function fixed a priori as 

conventional analytical methods (eg Fourier transform and the wavelet transform). In this paper, the 

algorithm of empirical mode decomposition (EMD) is proposed as an alternative to estimate the vocal tract 

formants characterizing the vocal tract. The proposed method was tested on natural speech. LPC analysis 

of the first three functions intrinsic modes using the autocorrelation is calculated; a comparison was made 

between the LPC analysis of the first three vowel of MFIs studied and the LPC analysis of the speech 

signal. 
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1. INTRODUCTION 

 

Spectral analysis is one of the most common farming methods in signal processing, the class of so-

called parametric methods expired enables better data spectral estimation was based model for 

determining the parameters of the latter. A parametric analysis method is analyzed by linear 

predictive coding LPC. LPC is defined as a method of encoding digital signal to analog years 

everything that has a particular value is provided by a linear function of the past values of the 

signal. 

 

Recently, a new temporal signal decomposition method called Empirical Mode Decomposition 

(EMD), has been introduced by Huang et al. [1] for processing data from nonstationary and 

nonlinear processes. The analysis is adaptive in contrast to traditional methods such as wavelets 

where the basic functions are fixed. The EMD has received more attention in terms of applications 

[2]-[3], interpretation [4]-[5], and improvement [6]-[7]. The major advantage of the EMD is that 

the basic functions are derived from the signal itself.  

 

The EMD is also used in speech analysis. In this paper, we combine EMD with linear prediction 

coding analysis (LPC); we exploit the characteristics of the empirical modes from the EMD to 

study a new approach.  

 

The remainder of the paper is organized as follows. Empirical mode decomposition (EMD) 

algorithm is defined in Section 2. EMD combined with LPC in Section 3. Results based on real 

speech signals are presented in Section 4. Finally, conclusions are given in Section 5. 
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2. EMPIRICAL MODE DECOMPOSITION 

 

The empirical mode decomposition has been proposed by Huang et al. as a new signal 

decomposition method for nonlinear and/or nonstationary signals [1]. Conventional signal 

analysis tools, such as Fourier or wavelet-based methods, require some predefined basis functions 

to represent a signal. Therefore, the EMD can be viewed as sub-band signal decomposition. The 

EMD relies on a fully data-driven mechanism that does not require any a priori known basis. The 

EMD decomposes a given signal into a collection of oscillatory modes, called intrinsic mode 

functions (IMFs). Each IMF can be viewed as a sub-band of the signal and represent fast to slow 

oscillations in the signal.  The algorithm operates through the following steps: 

 

1. Initialize the algorithm: 1j = , initialize residue )()(0 txtr = and fix the thresholdδ  

2. Extract local maxima and minima of )(1 tr j−
 

3. Compute the upper lower envelope )(tU j
 , )(tL j

 by cubic spline interpolation of local maxima 

and minima, respectively 

4. Compute the mean envelope ( )
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5. Compute the jth component )()()( 1 tmtrth jjj −= −
 

6. )(th j
 is processed as )(1 trj−

. Let )()(0. thth jj = and )(, tm kj
.......,1,0=k be the mean envelope 

of )(, th kj
, then compute )()()( 1,1,, tmthth kjkjkj −− −=  until   

7. Compute the jth IMF as )()( , thtIMF kjj =   

8. Update the residue )()()( 1 tIMFtrtr jjj −= −
 

9. Increase the sifting index j and repeat steps 2 to 8 until the number of local extrema in )(tr j
 is 

less than 3 
The signal reconstruction process x(t), which involves combining the IMFs formed from the 

EMD and the residual 
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3. EMD COMBINED WITH LPC 

 

To a better exploitation of IMFs, we operate an LPC analysis of the first tree IMFs of empirical 

mode decomposition of speech signal, in order to analyze the forming characterizing the speech 

signal [8]. 

 

4. RESULTS AND DISCUSSION 

 

To illustrate the effectiveness of the method we performed numerical simulations. The proposed 

approach has been tested on natural speech signals presented by three vowel / a /, / i /, / u /, and its 

performance in terms of accuracy has been compared to that of the LPC analysis of speech signal. 

The sampling rate of all speech signals used in the experiment is 11 kHz.   The formants are 

defined as the ordered resonances of the vocal-tract, from the lowest to the highest. Figure 2 shows 

the different modes obtained from the empirical mode decomposition of the signal of the vowel / a 

/, presented in Figure 1 and the residue of the last algorithm step. And similarly for the vowels / i / 

and / u /, an EMD decomposition was performed. In our approach, we proceed to an LPC analysis 

of the IMFs represented in figure 3 and its comparison to results of the same analysis operated on 

speech signal. The results are depicted in figures 3, 4 and 5 for vowel / to / and / i / and / u / 
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respectively. We can see easily that each component has the same number of zero crossings as 

extrema and is symmetric with respect to zero line. We note that the first mode corresponds 

naturally to the highest frequency, and the last one corresponds to the lowest frequency, we 

compute an LPC analysis of the three first intrinsic mode functions using the autocorrelation 

method. 
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Figure 1.  Waveform of the vowel /a/. 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-1

-0.5

0

0.5

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-1

-0.5

0

0.5

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-1

-0.5

0

0.5

1

Time [s]

 

Figure 2.  Waveform of the first tree IMFs of the vowel /a/. 
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Figure 3.  Comparison of the LPC analysis of the vowel / a / and the LPC analysis of the tree first IMFs 
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Figure 4.  Waveform of the vowel /i/. 
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Figure 5.  Waveform of the first tree IMFs of the vowel /i/. 
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Figure 6.  Comparison of the LPC analysis of the vowel / i / and the LPC analysis of the tree first IMFs 
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Figure 4.  Waveform of the vowel /u/. 
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Figure 8.  Waveform of the first tree IMFs of the vowel /u/. 
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Figure 9.  Comparison of the LPC analysis of the vowel / u / and the LPC analysis of the tree first IMFs 

 

As shown by Figure 3, and figure 4 and figure 5, the first IMFs have not submitted the low 

frequency signals but only the high frequencies. These results can be interpreted by the frequency 

response of an equivalent filter while the collection of filters resulting equivalents of any of the 

LPC analysis of IMFs given vowel tends the estimation of formants of voice leading. Although 

EMD is a non-linear decomposition method, but the formants of the speech signal are preserved 

and properly evaluated as can be seen in table 1 and 2 and 3 which respectively presents a 

comparison between the values of formants obtained from the LPC analysis of the vowel / a /, and 

the vowel / i /, and the vowel / u / and the analysis LPC of their three first IMFs. 

 
Table 1.  Comparison between the value of formants obtained by LPC analysis of the vowel / a / and the 

LPC analysis of these first three IMFs. 

 

 F1 F2 F3 F4 

Speech /a/ 0.002639 0.05116 0.1035 0.1406 

IMF1 - - 0.1028 0.1403 

IMF2 - 0.05224 - - 

IMF3 0.02785 - - - 

 

Table 2.  Comparison between the value of formants obtained by LPC analysis of the vowel / i / and the 

LPC analysis of these first three IMFs. 

 

 F1 F2 F3 F4 

Speech /a/ 0.01188 0.08082 0.1098 0.1331 
IMF1 - - 0.1098 0.1345 
IMF2 - 0.07869 - - 
IMF3 0.01152 - - - 

. 
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 F1 F2 F3 F4 

Speech /a/ 0.01469 0.09805 0.1456 0.1909 
IMF1 - - 0.1452 0.1899 
IMF2 - 0.09506 - - 
IMF3 0.1678 - - - 

 

5. CONCLUSIONS 

 

In this work, we have proposed a new methodology to decompose a speech signal into different 

oscillatory modes and to extract the resonant frequencies of the vocal tract i.e. formants from the 

LPC analysis of different intrinsic mode functions called IMFs. The combination of EMD with the 

LPC method allows the extraction and proper evaluation of different formants characterize 

different signals studied. 
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