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ABSTRACT

In this paper we consider redistribution of radiation defects, which were generated during radiation
processing, in a multilayer structure with porous epitaxial layer. It has been shown, that porosity of epitax-
ial layer gives a possibility to decrease quantity of radiation defects.
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1. INTRODUCTION

One of actual questions of solid state electronics is increasing of radiation resistance. Several me-
thods are using to increase the radiation resistance of devices of solid state electronics [1-5]. One
way to decrease quantity of radiation defects, generated during radiation processing of materials,
we present in our paper. Framework the approach we consider a heterostructure, which consist of
a substrate and porous epitaxial layer (see Fig. 1). We assume, that the substrate was under influ-
ence of radiation processing (ion implantation, effects of cosmic radiation et al) through the epi-
taxial layer. Radiation processing of materials leads to generation of radiation defects. In this pa-
per we analyzed influence of porosity of material on distribution of concentration of radiation
defects in the considered material.
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Fig. 1. Heterostructure, which includes into itself a substrate and an epitaxial layer. The figure also shows
distribution of concentration of implanted dopant
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2.METHOD OF SOLUTION

We solve our aim by analysis of distributions of concentrations of radiation defects in space and
time in the considered heterostructure. We determine the above distributions by solving the fol-
lowing system of equations [6-11]

QI(x,y,z,t)zi D,(x,y,z,T)aI(x’y’Z’t) +i Dl(x,y,z,T)al(x’y’Z’t) N
dt dx dx dy dy

dIx,y,z,
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Here I(x,y,z,f) and V(x,y,z,f) are the spatio-temporal distributions of concentrations of interstitials
and vacancies; I and V' are the equilibrium distributions of concentrations of interstitials and va-
cancies; diffusion coefficients of interstitials and vacancies have been described by the following
functions Dy(x,y,z,T) and Dy(x,y,z,T); terms with squares of concentrations of interstitials and va-
cancies (Vz(x,y,z,t) and Iz(x,y,z,t), respectively) correspond to generation divacancies and analog-
ous complexes of interstitials (see, for example, [10] and appropriate references in this work);
ki (x,,z,T) is the parameter of recombination of point defects; k;/(x,y,z,T) and ky y(x,y,z,T) are the
parameters of generation of complexes of point defects and generation; k, V', ¢ and a are the
Boltzmann constant, the equilibrium distribution of vacancies, the atomic spacing and the specific
surface energy, respectively. @ =a’. Framework taking into account porosity we assume, that at

. 20w
I(x’y’zao)=ﬁ (X,y»Z), V(x’yaz’0)=fv (x»y,Z), V(xl +‘/nt’ y[ +‘/nt’ Zl +‘/,,t’t) =V [1-"—\] . (2)

initial stage porous are approximately cylindrical with average dimensions r=4/x’ +y, and z,

[12]. With time small pores decomposing into vacancies. The vacancies are absorbed by large
pores [8]. The large pores takes spherical form during the absorbtion [8]. We determine distribu-
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tion of concentration of vacancies, which was formed due to porosity, by summing over all pores,

ie.
fvp(x+ia,y+j,6’,z+k;(,t), R=yx*+y+2>.

i=0 j=0k=0

V(x,y,z,t)=

M-
M=

Averaged distances between centers of pores are equal to @, £ and Y in x, y and z directions, re-
spectively. Quantities of pores in x, y and z directions are equal to i, j and k.

Distributions of concentrations of divacancies @(x,y,z,t) and diinterstitials @, (x,y,z,f) in space
and time have been calculated by solving the following system of equations [9-11]
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Functions D g(x,y,z,T) and Dg/(x,y,z,T) describe spatial and temperature dependences of the dif-
fusion coefficients of complexes of radiation defects; k;(x,y,z,T) and ky(x,y,z,T) are the parameters
of decay of the above complexes.

We calculate distributions of concentrations of radiation defects in space and time by method of

averaging of function corrections [13]. To use the approach we write the Eqs. (1) and (3) with
account initial distributions of defects, i.e.
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Now we use not yet known average values ¢4, of the required concentrations in right sides of the
Egs. (1a) and (3a) instead of the concentrations. The replacement gives us possibility to obtain
following equations for determination the first-order approximations of concentrations of radia-
tion defects in the following form

D D
all(x’y’z’t):i s a,uz(x,y,z,t) +i s a/lz(x,y,z,t) +f,(x,y,z)5(t)+
dt ox|VkT dx oy|VkT dy
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Integration of the both sides of Egs. (15) and (3b) on time gives a possibility to obtain first-order
approximations of concentrations of radiation defects in the final form
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We calculate average values of the required approximations by the following relation [13]
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Substitution of the relations (1¢) and (3c¢) into the relation (5) gives a possibility to calculate the
required average values in the following form
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4
Approximations of concentrations of radiations defects with the second and higher orders have
been calculated framework standard iterative procedure of method of averaging of function cor-
rections [13]. Framework the procedure we determine the approximation of the n-th order by re-
placement of the concentrations of radiation defects 7 (x,y,z, 1), V (x,y,2,1), & (x,y,z,t) and Dy
(x,y,z,t) in right sides of the Egs.(15) and (3b) on the following sums &, ,+p ,.(x,y,z,t). The re-
placement gives a possibility to obtain the second-order approximations of concentrations of radi-
ation defects
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Integration of the both sides of Eqs. (1d) and (3d) gives a possibility to obtain relations for the
second-order approximations of the required concentrations of radiation defects in the following
form
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We determine average values of the second-order approximations by the standard relation [13]
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Framework this paper the required spatio-temporal distributions of concentrations of radiations
defects have been determined by using the second-order approximations by using method of av-
eraging of function corrections. The approximations give enough good qualitative and some
quantitative results. We check all analytical results by comparison with numerical one.

3. DISCUSSION

In the previous section we analytically take into account porosity of materials in comparison with
cited similar works. In this situation we obtain decreasing quantity of radiation defects (one can
find decreasing both types of accounted defects: point defects and their simplest complexes) in
comparison with nonporous materials. Probably this effect could be obtained due to drain of these

defects to pores.
1.5 4 1
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p(x,0)
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0 L/4 L2 3L/4 L
X

Fig. 2. Distributions of concentrations of point radiation defects for fixed value of annealing time.

Curve 1 corresponds to implantation of ions of dopant through nonporous epitaxial layer. Curve 2
corresponds to implantation of ions of dopant through porous epitaxial layer

Typical distributions of concentrations of point radiation defects and their simplest complexes are
presented on Figs. 2 and 3, respectively. In this situation using overlayer over device area gives a
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possibility to increase radiation resistance of the devices during radiation processing. Using por-
ous overlayer gives a possibility to obtain larger increasing of radiation resistance. The Figs. 2
and 3 also shows, that quantity of point defects is larger, than quantity of simplest complexes of
point defects. This effect could be find because only part of point defects could generate their
complexes. It should be also noted, that we analyzed relaxation of concentrations of radiation de-
fects analytically and in more common case in comparison with similar results in literature. The
figures show, that porosity of materials of epitaxial layer gives a possibility to decrease quantity
of radiation defects. In this situation porous overlayer over device area gives a possibility to in-
crease safety during radiation processing. Analogous situation could be find during using nonpor-
ous overlayer over device area. However pores probably became drains of radiation defects. In
this situation porosity of overlayer leads to higher safety of device area.
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0.000 T T T
0 L4 L2 3L/4 L

Fig. 3. Distributions of concentrations of simplest complexes of point radiation defects for fixed value of
annealing time.

Curve 1 corresponds to implantation of ions of dopant through nonporous epitaxial layer. Curve 2
corresponds to implantation of ions of dopant through porous epitaxial layer

4. CONCLUSIONS

In the present paper we analyzed redistributions of radiations defects in material with porous and
nonporous overlayer after radiation processing. We show, that presents of porous overlayer gives
a possibility to decrease quantity of radiation defects.
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