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ABSTRACT

In this paper we introduce a modification of recently introduced analytical approach to model mass- and
heat transport. The approach gives us possibility to model the transport in multilayer structures with ac-
count nonlinearity of the process and time-varing coefficients and without matching the solutions at the
interfaces of the multilayer structures. As an example of using of the approach we consider technological
process to manufacture more compact double base heterobipolar transistor. The technological approach
based on manufacturing a heterostructure with required configuration, doping of required areas of this hete-
rostructure by diffusion or ion implantation and optimal annealing of dopant and/or radiation defects. The
approach gives us possibility to manufacture p-n- junctions with higher sharpness framework the transistor.
In this situation we have a possibility to obtain smaller switching time of p-n- junctions and higher com-
pactness of the considered bipolar transistor.
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1. INTRODUCTION

In the present time performance and integration degree of elements of integrated circuits inten-
sively increasing (p-n-junctions, field-effect and bipolar transistors, ...) [1-6]. To increase the per-
formance it could be used materials with higher values of speed of transport of charge carriers,
are developing new and optimization of existing technological processes [7-10]. To increase inte-
gration degree of elements of integra-ted circuits (i.e. to decrease dimensions of elements of inte-
grated circuits) are developing new and optimization of existing technological processes. In this
case it is attracted an interest laser and microwave types of annealing of dopant and/or radiation
defects [11-13], inhomogeneity (existing of several layers) of heterostructures [14-17], radiation
processing of doped materials [18].

Framework this paper we consider a heterostructure, which consist of a substrate and three epitax-
ial layers (see Fig. 1). Some sections have been manufactured in the epitaxial layers by using
another materials. After finishing of growth of new epitaxial layer with required sections the sec-
tions have been doped by diffusion or ion implantation. After finishing of doping of last epitaxial
layer we consider annealing of dopant and/or radiation defects. Main aim of the present paper is
analysis of redistribution of dynamics of dopant and radiation defects during their annealing.
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Fig. 1. Heterostructure with a substrate with three epitaxial layers and sections in the layers

2. Method of solution

To solve our aim we determine spatio-temporal distribution of concentration of dopant. We de-
termine the distribution by solving the second Ficks law in the following form [1,14,16-18]
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Here C(x,y,z,t) is the spatio-temporal distribution of concentration of dopant; 7 is the temperature
of annealing; D is the dopant diffusion coefficient. Value of dopant diffusion coefficient depends
on properties of materials, speed of heating and cooling of heterostructure (with account Arrhe-
nius law). Dependences of dopant diffusion coefficients could be approximated by the following
function [19-21]

/4 2
DC=DL(x,y,z,T)[1+§M}{l+g,V(x’y’z’t)+ Vi(x.y.z.1)

P’ (x,y,2,T) v 5 V) , 3)

where Dy (x,y,z,T) is the spatial (due to existing several layers wit different properties in hetero-
structure) and temperature (due to Arrhenius law) dependences of dopant diffusion coefficient; P
(x,y,z,T) is the limit of solubility of dopant; parameter ycould be integer framework the following
interval ye[1,3] [19]; V(x,y,z,f) is the spatio- temporal distribution of concentration of radiation
vacancies; V' is the equilibrium distribution of concentration of vacancies. Concentrational de-
pendence of dopant diffusion coefficient have been discussed in details in [19]. It should be
noted, that using diffusion type of doping did not leads to generation radiation defects and {;= &=
0. We determine spatio-temporal distributions of concentrations of point defects have been de-
termine by solving the following system of equations [20,21]
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Here p=L,V; I(x.,y,z,t) is the spatio-temporal distribution of concentration of radiation interstitials;
D,(x,y,z,T) is the diffusion coefficients of radiation interstitials and vacancies; terms Vz(x, V,2,)
and Iz(x,y,z,t) correspond to generation of divacancies and diinterstitials; k;y(x,y,z,T) is the para-
meter of recombination of point radiation defects; &, ,(x,y,z,T) are the parameters of generation of
simplest complexes of point radiation defects.

We determine spatio-temporal distributions of concentrations of divacancies @y(x,y,z,f) and diin-
terstitials @& (x,y,z.f) by solving the following system of equations [20,21]
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Here Dgy(x,y,z,T) are the diffusion coefficients of complexes of radiation defects; k,(x,y,z,T) are
the parameters of decay of complexes of radiation defects.

We determine spatio-temporal distributions of concentrations of dopant and radiation defects by
using method of averaging of function corrections [22] with decreased quantity of iteration steps
[23]. Framework the approach we used solutions of Egs. (1), (4) and (6) in linear form and with
averaged values of diffusion coefficients Doy, Do;, Doy, Dogr, Dogy as initial-order approximations
of the required concentrations. The solutions could be written as
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The second-order approximations and approximations with higher orders of concentrations of
dopant and radiation defects we determine framework standard iterative procedure [22,23].
Framework this procedure to calculate approximations with the n-order one shall replace the
functions C(x,y,z,1), I(x,y,z,1), V(x,y,2,t), D(x,y,2,1), PAx,y,zt) in the right sides of the Egs. (1), (4)
and (6) on the following sums &,+p ,.1(x,y,2,). As an example we present equations for the
second-order approximations of the considered concentrations
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Integration of the left and right sides of Eqs.(8)-(10) gives us possibility to obtain relations for the
second-order approximations of concentrations of dopant and radiation defects in final form
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We determine average values of the second-orders approximations of the considered concentra-
tions by using the following standard relations [22,23]
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Substitution of relations (8a)-(10a) into relation (11) gives us possibility to obtain relations for
the required average values @,
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The considered substitution gives us possibility to obtain equation for parameter o5¢. Solution of
the equation depends on value of parameter ¥ Analysis of spatio-temporal distributions of con-
centrations of dopant and radiation defects has been done by using their second-order approxima-
tions framework the method of averaged of function corrections with decreased quantity of itera-
tive steps. The second-order approximation is usually enough good approximation to make qua-
litative analysis and obtain some quantitative results. Results of analytical calculation have been
checked by comparison with results of numerical simulation.
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3. Discussion

In this section we analyzed dynamic of redistribution of dopant and radiation defects in the consi-
dered heterostructure during their annealing by using calculated in the previous section relations.
Typical distributions of concentrations of dopant in heterostructures are presented on Figs. 2 and
3 for diffusion and ion types of doping, respectively. These distributions have been calculated for
the case, when value of dopant diffusion coefficient in doped area is larger, than in nearest areas.
The figures show, that inhomogeneity of heterostructure gives us possibility to increase sharpness
of p-n- junctions. At the same time one can find increasing homogeneity of dopant distribution in
doped part of epitaxial layer. Increasing of sharpness of p-n-junction gives us possibility to de-
crease switching time. The second effect leads to decreasing local heating of materials during
functioning of p-n-junction or decreasing of dimensions of the p-n-junction for fixed maximal
value of local overheat. In the considered situation we shall optimize of annealing to choose com-
promise annealing time of infused dopant. If annealing time is small, the dopant has no time to
achieve nearest interface between layers of heterostructure. In this situation distribution of con-
centration of dopant is not changed. If annealing time is large, distribution of concentration of
dopant is too homogenous.
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Fig.2. Distributions of concentration of infused dopant in heterostructure

from Fig. 1 in direction, which is perpendicular to interface between epitaxial layer substrate. In-
creasing of number of curve corresponds to increasing of difference between values of dopant
diffusion coefficient in layers of heterostructure under condition, when value of dopant diffusion
coefficient in epitaxial layer is larger, than value of dopant diffusion coefficient in substrate
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Fig.3. Distributions of concentration of implanted dopant in heterostructure
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from Fig. 1 in direction, which is perpendicular to interface between epitaxial layer substrate.
Curves 1 and 3 corresponds to annealing time ®=O.OO48(LX2+Ly2+Lzz)/D0. Curves 2 and 4 corres-
ponds to annealing time @:0.0057(Lx2+Ly2+LZZ)/D0. Curves 1 and 2 corresponds to homogenous
sample. Curves 3 and 4 corresponds to heterostructure under condition, when value of dopant dif-
fusion coefficient in epitaxial layer is larger, than value of dopant diffusion coefficient in sub-
strate lon doping of materials leads to generation radiation defects. After finishing this process
radiation defects should be annealed. The annealing leads to spreading of distribution of concen-
tration of dopant. In the ideal case dopant achieves nearest interface between materials. If dopant
has no time to achieve nearest interface, it is practicably to use additional annealing of dopant.
We consider optimization of annealing time framework recently introduced criterion [17,24-30].
Framework the criterion we approximate real distributions of concentrations by step-wise func-
tions (see Figs. 4 and 5). Farther we determine optimal values of annealing time by minimization
the following mean-squared error

1 LLyL,
U= Clx.y.2.0)-w(x.v.2)|dzd yd x, 15
LXL}‘LZH{[ (x,9,2,0)-y(x,y,2)]dzd yd x (15)
2
9
6 1
\4\
0 i3

X

Fig. 4. Spatial distributions of dopant in heterostructure after dopant infusion.

Curve 1 is idealized distribution of dopant. Curves 2-4 are real distributions of dopant for differ-
ent values of annealing time. Increasing of number of curve corresponds to increasing of anneal-
ing time

4

/_].

Ax0)

Fig. 5. Spatial distributions of dopant in heterostructure after ion implantation.
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Curve 1 is idealized distribution of dopant. Curves 2-4 are real distributions of dopant for differ-
ent values of annealing time. Increasing of number of curve corresponds to increasing of anneal-

ing time

0.5 4

—23/
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3
® 024
] 1
0.1
0.0 T T T T T T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5

a’L, & e, v

Fig.6. Dependences of dimensionless optimal annealing time for doping by diffusion, which have been ob-
tained by minimization of mean-squared error, on several parameters.

Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and =y=
0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure.
Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter € for
a/L=1/2 and £=y=0. Curve 3 is the dependence of dimensionless optimal annealing time on val-
ue of parameter & for a/L=1/2 and £=y=0. Curve 4 is the dependence of dimensionless optimal
annealing time on value of parameter yfor a/L=1/2 and £=£=0
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Fig.7. Dependences of dimensionless optimal annealing time for doping by ion implantation, which have
been obtained by minimization of mean-squared error, on several parameters.

Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and &=y=
0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure.
Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter € for
a/L=1/2 and £=y=0. Curve 3 is the dependence of dimensionless optimal annealing time on val-
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ue of parameter & for a/L=1/2 and £=y=0. Curve 4 is the dependence of dimensionless optimal
annealing time on value of parameter yfor a/L=1/2 and €=£=0 where W¥(x,y,7) is the approxima-
tion function. Dependences of optimal values of annealing time on parameters are presented on
Figs. 6 and 7 for diffusion and ion types of doping, respectively. Optimal value of time of addi-
tional annealing of implanted dopant is smaller, than optimal value of time of annealing of in-
fused dopant due to preliminary annealing of radiation defects.

4. CONCLUSIONS

In this paper we consider an approach to manufacture more compact double base heterobipolar
transistor. The approach based on manufacturing a heterostructure with required configuration,
doping of required areas of the heterostructure by diffusion or ion implantation and optimization
of annealing of dopant and/or radiation defects. The considered approach of monufactured the
heterobipolar transistor gives us possibility to increase sharpness of p-n-junctions framework the
transistor. In this situation one have a possibility to increase compactness of the transistor.
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