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Code of a multidimensional fractional
quasi-Newton method with an order of convergence
at least quadratic using recursive programming
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Abstract

The following paper presents a way to define and classify a family of fractional iterative methods through a
group of fractional matrix operators, as well as a code written in recursive programming to implement a variant of
the fractional quasi-Newton method, which through minor modifications, can be implemented in any fractional
fixed-point method that allows solving nonlinear algebraic equation systems.
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1. FractioNAL QUASI-NEWTON METHOD ACCELERATED
To begin this section, it is necessary to mention that due to the large number of fractional operators that may exist
[1-13], some sets must be defined to fully characterize the fractional quasi-Newton method accelerated! [14,15].
It is worth mentioning that characterizing elements of fractional calculus through sets is the main idea behind of
the methodology known as fractional calculus of sets [16]. So, considering a scalar function & : R” — R and the

canonical basis of R™ denoted by {é};~, it is possible to define the following fractional operator of order «a using
Einstein notation

g h(x) := éof h(x). (1)

Therefore, denoting by d} the partial derivative of order n applied with respect to the k-th component of the
vector x, using the previous operator it is possible to define the following set of fractional operators

0" (h):= {ogj : J0%h(x) and lim o%h(x) = I'h(x) Vk > 1}, 2)
4 a—n

whose complement may be defined as follows

OYg(h):= {oi‘ : o h(x) Vk > 1 and g(lir}l o h(x) # di'h(x) in at least one value k > 1}, (3)

as a consequence, it is possible to define the following set

Oxa(h) := O o () U Oyg (h). (4)

On the other hand, considering a function k: () c R" — R", it is possible to define the following set

mO(h):={of : of € OLh ([hle) Vk <m}, (5)
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where [h]; : O CR™ — R denotes the k-th component of the function . So, it is possible to define the following
set of fractional operators

W MO ()= () Ok (h), (6)
keZ

which under the classical Hadamard product it is fulfilled that

09 o h(x) := h(x) YoZ € ,, MO (h). (7)

Then, considering that for each operator 0¢ it is possible to define the following fractional matrix operator

Aq(08) = ([Aa(0D)]jk) = (0f), (8)

it is possible to define for each operator 0% € ,, MOy4' (h) the following matrix

Apgi=Ay(0§)0 AL (h), (9)

where A,(h) = ([Aa(h)]jk) = ([h]k). On the other hand, considering that when using the classical Hadamard

product in general o}" 0 01" = o;mq)a. It is possible to define the following modified Hadamard product [16]:

i,x X’

(prq)a if i = j (Hadamard product of type vertical) ’

OZjooqa' (10)

x T

{ 0" 001, ifi=j (Hadamard product of type horizontal)

Oi,x ’

with which it is possible to obtain the following theorem:

Theorem 1. Let 0¢ be a fractional operator such that 0¢ € ,, MOzy4'(h). So, considering the modified Hadamard product
given by (10), it is possible to define the following set of fractional matrix operators

mG(Aq (07)) = {AZT =Ag (") 1 r€Z and A7 = ([Azr]jk):: (Olr(a)}’ (11)

which corresponds to the Abelian group generated by the operator A, (0%).

Proof. It should be noted that due to the way the set (11) is defined, just the Hadamard product of type vertical is
applied among its elements. So, VAL Al e ,,G(A, (0%)) it is fulfilled that

AT 0 AT = (14 ) o (145") = (o7 ) = (457" = 4577, (12)

with which it is possible to prove that the set (11) fulfills the following properties, which correspond to the
properties of an Abelian group:

VAL, AL A € 1w G Ay (0f)) itis fulfilled that (A oA )o AT = AT o (A‘;ﬂ oAg{)

X
A € ,,G (A, (0%)) such that VA €,,G (A, (09)) it is fulfilled that A0 0 Agf = AgF
VAY € ,,G(Ay (0%)) AAg P €,,G (A, (0%)) such that A o Ay P = A0

VAL, A € ,,G (A, (0%)) it is fulfilled that Ay 0 Ayl = Agl 0 A

X

(13)
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From the previous theorem, it is possible to define the following group of fractional matrix operators [16]:

wGrm(@):= | ] wG(Aa(0d)), (14)
of €, MOy ()

where VA?? A?qa € wGrrpm (@), with i # j, the following property is defined

La’ 7y,
Az’; oA;ﬂlIX = Az’la =Apq (ofz o o?z), p,q€Z\{0}, (15)
as a consequence, it is fulfilled that

(r-1)
,a

VAL €,,Grip(a) such that A, (o;{x) = Ak (o”“ o oj"jc) A = A]

i,x

oA = Apa (0T 00™).  (16)

i,x jx

Therefore, if @rpp; denotes the iteration function of some fractional iterative method [16], it is possible to
obtain the following result:

Let Qg € ]R\Z = VAZ%) € mGFIM(a) H(DFIM = q)FIM(AaO) VADtO El{q)p[M(Aa) L ae ]R\Z} (17)

So, from the previous result, it is possible to define different sets that allow characterizing different fractional
iterative methods. For example, the fractional Newton-Raphson method may be characterized through the fol-
lowing set [16,17]:

mGENR(®) = Grrm(@) N {of 1 AL = Aq (0F) 0 A7 ()}, (18)

while the fractional pseudo-Newton method may be characterized through the following set [18,19]:

mGFpN(a)::mGHM(a)ﬁ{off :ofc=0VceR\ {0} and szl}, (19)

as a consequence, the fractional quasi-Newton method may be characterized through the following set of
fractional matrix operators [14,20]:

m GroN (@) := 1, Genr(@) N 1, Gepn (@). (20)
Before continuing it is necessary to define the following corollary:

Corollary 1. Let f : Q C R" — R™ be a function with a point & € Q such that ||f (£)|| = 0, and let h: Q c R" — R"
be a function such that hV(x) = f)(x) Vx € B(&;6). So, Yo¥ € mO,lw(h) such that A, (0%) € ,, Genr(@), there exists
Azla = Ay (0%) 0 AT (h) such that it fulfills the following condition

. -1 .
lim Apq(x) = (fN) * Vxe B(E;0) (21)
Then, defining the following function

a, if |[x]gl#0 and [If(x)l> o0

“f([x]k'x)::{ 1, f (=0 or [fWI<8 .

the fractional quasi-Newton method accelerated may be defined and classified through the following set of
matrices [15]:

{Ah,af=Ah,af (43") : A% € wGron(@) and ClygmlAh,am:(f“)(x))’l with Ah,afm:([Ah,af]jux))}. (23)

To end this section, it is worth mentioning that the fractional quasi-Newton method accelerated has been used
in the study for the construction of hybrid solar receivers [15], and that in recent years there has been a growing
interest in fractional operators and their properties for solving nonlinear algebraic equation systems [17,21-28].
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2. ProGrRAMMING CoDE OF FRACTIONAL QUASI-NEWTON METHOD ACCELERATED

The following code was implemented in Python 3 and requires the following packages:

import math as mt
> import numpy as np
3 from numpy import linalg as la

For simplicity, a two-dimensional vector function is used to implement the code, that is, f : Q C R?2 > R?,
which may be denoted as follows:

(24)

fio=(L14),

[f]2(x)

where [f]; : Q c R> — R Vi € {1,2}. Then considering a function @ : (R\Z)xC" — C", a variant of the fractional
quasi-Newton method may be denoted as follows [15,16]:

Xiv1 = P, x;) = xj = App o, (xi)f (i), 1=0,1,2---, (25)

where A}, £ (x;) is a matrix evaluated in the value x;, which is given by the following expression

ag([xilkxi)

Ay (53) = (A slxi)) o= o} L) (26)

with h¢(x) := f(x;) + f(l)(xi)(x —x;). It is worth mentioning that one of the main advantages of fractional
iterative methods is that the initial condition x; can remain fixed, with which it is enough to vary the order «
of the fractional operators involved until generating a sequence convergent {x;};5; to the value £ € (). Since the
order a of the fractional operators is varied, different values of a can generate different convergent sequences to
the same value & but with a different number of iterations. So, it is possible to define the following set

Conv(&) := {CD : lirréq)(a,x) =&, € B(é;é)}, (27)
x—
which may be interpreted as the set of fractional fixed-point methods that define a convergent sequence {x;},;
to some value &, € B(&;6). So, denoting by card (:) the cardinality of a set, under certain conditions it is possible to
prove the following result (see reference [16], proof of Theorem 2):

card (Convg(&)) = card (R), (28)

from which it follows that the set (27) is generated by an uncountable family of fractional fixed-point methods.
Before continuing, it is necessary to define the following corollary [16]:

Corollary 2. Let © : (R\ Z) x C" — C" be an iteration function such that ® € Convg(E). So, if © has an order of
convergence of order (at least) p in B(&;1/2), for some m € IN, there exists a sequence {P;};s,, € B(p;0x) given by the
following values

i>m

_ log (Jlxi —xil)
Z log (llxj—1 = xi-2ll)’

such that it fulfills the following condition:
lim P, — p,
1—00
and therefore, there exists at least one value k > m such that

P, € B(p;e). (30)
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The previous corollary allows estimating numerically the order of convergence of an iteration function @ that
generates at least one convergent sequence {x;};»;. On the other hand, the following corollary allows characterizing
the order of convergence of an iteration function ® through its Jacobian matrix ®(!) [16, 28]:

Corollary 3. Let @ : (R\Z)x C" — C" be an iteration such that ® € Convg(&). So, if ® has an order of convergence of
order (at least) p in B(&;0), it is fulfilled that:

1, if lim ”CD(”(a,x)” =0
x—&
pi= . (31)
2, if lim q)(l)(a,x)” =0

x—&

Before continuing, it is necessary to mention that what is shown below is an extremely simplified way of how
a fractional iterative method should be implemented, a more detailed description, as well as some applications,
may be found in the references [14-18, 28-30]. Considering the following notation:

ErrDom := {||xi —xi_1||2} v ErrIm:= {||f(xi)||2}i21, X:= {xi}izl’ (32)

i>
it is possible to implement a particular case of the multidimensional fractional quasi-Newton method acceler-
ated through recursive programming using the following functions:

1 def Dfrac(a,p,x):
2 s=p-a
if pu>-1:
return (mt.gamma(u+1)/mt.gamma(s+1))*pow(complex(x),s) if mt.ceil(s)-s>0 or s>-1 else 0

o def af(a,xk,normf):
60=3
return a if abs(xk)>0 and normf>00 else 1

) def FractionalQuasiNewton(ErrDom,ErrIm,X,a,x0):
1 Tol=pow(10,-5)

2 Lim=pow(10,2)

InvA=InvAhfaf(a,x0)

15 if abs(la.det(InvA))>0:
x1=x0-np.matmul (la.inv(InvA),f(x0))
17 ED=1a.norm(x1-x0)

19 if ED>0:
20 EI=1la.norm(f(x1))

ErrDom.append(ED)
3 ErrIm.append(EI)
2 X.append(x1)
N=1len(X)

27 if max(ED,EI)>Tol and N<Lim:
ErrDom,ErrIm,X=FractionalQuasiNewton(ErrDom,ErrIm,X,a,x1)

30 return ErrDom,ErrIm,X

To implement the above functions, it is necessary to follow the steps shown below:

i) A function must be programmed together with its Jacobian matrix.

1 def f(x):

2 y=np.zeros((2,1)).astype(complex)

3 y[0]=np.sin(x[0])*pow(x[0],2)+ np.cos(x[1])*pow(x[1],3)-5
4 y[1]=np.cos(x[0])*pow(x[0],3)-np.sin(x[1])*pow(x[1],2)-7

5 return y
7 def Df(x):
8 y=np.zeros((2,2)).astype(complex)

9 y[0][0]=2%np.sin(x[0])*x[0]+np.cos(x[0])*pow(x[0],2)

10 y[O0][1]=3*np.cos(x[1])*pow(x[1],2)-np.sin(x[1])*pow(x[1],3)
11 y[1][0]=3%np.cos(x[0])*pow(x[0],2)-np.sin(x[0])=*pow(x[0],3)
12 y[1]1[1]=-2*np.sin(x[1])*x[1]-np.cos(x[1])*pow(x[1],2)

13 return y
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ii)

1

10
11

14
15

16

iii)
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a1
The matrix Ahf,af
def InvAhfaf(a,x):
f0=f(x)
DfO=Df (x)
normf=1a.norm(f0)

h11=£0[0]
h1x=Df0[0][0]
h1y=Df0[0][1]

h21=£0[1]
h2x=Df0[1,0]
h2y=D£0[1,1]

al=af(a,x[0],normf)
a2=af(a,x[1],normf)

must be programmed.

y=np.zeros((2,2)).astype(complex)

y[0][0]=(h11-h1x*x[0])*Dfrac(al1,0,x[0])+h1x*Dfrac(
y[O0][1]=(h11-h1yx*x[1])*Dfrac(a2,0,x[1])+h1ly*Dfrac(
y[1]1[0]=(h21-h2x*x[0])*Dfrac(a1,0,x[0])+h2x*Dfrac (
y[1][1]=(h21-h2y*x[1])*Dfrac(a2,0,x[1])+h2y=*Dfrac(

return vy

Three empty vectors, a fractional order a, and an initial condition xy must be defined before implementing
the function FractionalQuasiNewton.

ErrDom=[ ]

> ErrIm=[]
s X=[]

a=-1.598394

x0=2.25*np.ones((2,1))

ErrDom,ErrIm,X=FractionalQuasiNewton(ErrDom,ErrIm,X,a,x0)

When implementing the previous steps, if the fractional order « and initial condition x, are adequate to ap-
proach a zero of the function f, results analogous to the following are obtained:

[xil1

[xi]2

[lxi = xi-1ll2

I1f Gxi)lla

—4.735585327165831

—4.735751446234244 - 0.0005201775227302893i

—4.737171940180769 — 0.00281888213849101731
—4.738070885342333 — 0.004902921292654457i
—4.738147107048297 — 0.00657969269076015i

—4.729750257024641 - 0.004361695131642888i
—4.7286434095025385 - 0.003971241380369586i
—4.730316596597024 + 0.024479642825272506i
—4.730869316300165 + 0.024410915392472112i
—4.730869106529115 + 0.02441096901812828i

—-1.0702683350651077

—1.4523845601521614-1.1965409706379078i
—-1.3067374776351186 —1.170476096763722i
—1.05437666853289 —1.1528378083779465i
—0.5382886896737178 —1.2188355360816861

0.5957441863423869 - 1.7216488909240522i
0.5950641918651102 —1.724723641739149i
0.5937988516457116 —1.7278144278472323i
0.5939080267113869 —1.7280910966350023i
0.593907920270218 —1.7280909090943382i

7.73450607213871
1.2560746005194463
0.1479856484317521
0.2529866370176711
0.5202934934794708

0.00634398412485266
0.0033606622313366525
0.028695059013230096
0.0006314169330564483
3.0558276730499713¢ - 07

18.837153585624463

15.550666339012087
18.23359009045263

21.800921293297737
25.01898906299888

3.0045420137336363

2.9995701108099517

0.05460293489272963
2.0574246244311213e-05
3.650221618055468¢ 12

Table 1: Results obtained using the fractional quasi-Newton method accelerated [15].

Therefore, from the Corollary 2, the following result is obtained:

16

_ log (||x16 — x15l|)
log (|Jx15 — x14l|)

~2.0361 € B(p; ox),

which is consistent with the Corollary 3, since if ®rgy € Convs(&), in general Orgy (Ahf,af) fulfills the follow-

ing condition (see reference [28], proof of Proposition 1):

lim
x—&

0] -o.

(33)

from which it is concluded that the fractional quasi-Newton method accelerated has an order of convergence
(at least) quadratic in B(&;0).
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