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Abstract

The following paper presents a way to define and classify a family of fractional iterative methods through a
group of fractional matrix operators, as well as a code written in recursive programming to implement a variant of
the fractional quasi-Newton method, which through minor modifications, can be implemented in any fractional
fixed-point method that allows solving nonlinear algebraic equation systems.
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1. Fractional Quasi-Newton Method Accelerated

To begin this section, it is necessary to mention that due to the large number of fractional operators that may exist
[1–13], some sets must be defined to fully characterize the fractional quasi-Newtonmethod accelerated1 [14,15].
It is worth mentioning that characterizing elements of fractional calculus through sets is the main idea behind of
the methodology known as fractional calculus of sets [16]. So, considering a scalar function h : Rm→ R and the
canonical basis of Rm denoted by {êk}k≥1, it is possible to define the following fractional operator of order α using
Einstein notation

oαx h(x) := êko
α
k h(x). (1)

Therefore, denoting by ∂nk the partial derivative of order n applied with respect to the k-th component of the
vector x, using the previous operator it is possible to define the following set of fractional operators

On
x,α(h) :=

{
oαx : ∃oαk h(x) and lim

α→n
oαk h(x) = ∂nkh(x) ∀k ≥ 1

}
, (2)

whose complement may be defined as follows

On,c
x,α(h) :=

{
oαx : ∃oαk h(x) ∀k ≥ 1 and lim

α→n
oαk h(x) , ∂nkh(x) in at least one value k ≥ 1

}
, (3)

as a consequence, it is possible to define the following set

On,u
x,α(h) := On

x,α(h)∪On,c
x,α(h). (4)

On the other hand, considering a function h : Ω ⊂R
m→R

m, it is possible to define the following set

mOn,u
x,α(h) :=

{
oαx : oαx ∈On,u

x,α ([h]k) ∀k ≤m
}
, (5)
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where [h]k : Ω ⊂R
m→R denotes the k-th component of the function h. So, it is possible to define the following

set of fractional operators

mMO∞,ux,α (h) :=
⋂
k∈Z

mOk,u
x,α(h), (6)

which under the classical Hadamard product it is fulfilled that

o0
x ◦ h(x) := h(x) ∀oαx ∈ mMO∞,ux,α (h). (7)

Then, considering that for each operator oαx it is possible to define the following fractional matrix operator

Aα (oαx ) =
(
[Aα(oαx )]jk

)
=

(
oαk

)
, (8)

it is possible to define for each operator oαx ∈ mMO∞,ux,α (h) the following matrix

Ah,α := Aα (oαx ) ◦ATα (h) , (9)

where Aα(h) =
(
[Aα(h)]jk

)
=

(
[h]k

)
. On the other hand, considering that when using the classical Hadamard

product in general opαx ◦ o
qα
x , o

(p+q)α
x . It is possible to define the following modified Hadamard product [16]:

o
pα
i,x ◦ o

qα
j,x :=

 o
pα
i,x ◦ o

qα
j,x , if i , j (Hadamard product of type horizontal)

o
(p+q)α
i,x , if i = j (Hadamard product of type vertical)

, (10)

with which it is possible to obtain the following theorem:

Theorem 1. Let oαx be a fractional operator such that oαx ∈ mMO∞,ux,α (h). So, considering the modified Hadamard product
given by (10), it is possible to define the following set of fractional matrix operators

mG(Aα (oαx )) :=
{
A◦rα = Aα (orαx ) : r ∈Z and A◦rα =

(
[A◦rα ]jk

)
:=

(
orαk

)}
, (11)

which corresponds to the Abelian group generated by the operator Aα (oαx ).

Proof. It should be noted that due to the way the set (11) is defined, just the Hadamard product of type vertical is
applied among its elements. So, ∀A◦pα ,A

◦q
α ∈ mG(Aα (oαx )) it is fulfilled that

A
◦p
α ◦A

◦q
α =

(
[A◦pα ]jk

)
◦
(
[A◦qα ]jk

)
=

(
o

(p+q)α
k

)
=

(
[A◦(p+q)
α ]jk

)
= A◦(p+q)

α , (12)

with which it is possible to prove that the set (11) fulfills the following properties, which correspond to the
properties of an Abelian group:


∀A◦pα ,A

◦p
α ,A◦rα ∈ mG(Aα (oαx )) it is fulfilled that

(
A
◦p
α ◦A

◦q
α

)
◦A◦rα = A◦pα ◦

(
A
◦q
α ◦A◦rα

)
∃A◦0α ∈ mG(Aα (oαx )) such that ∀A◦pα ∈ mG(Aα (oαx )) it is fulfilled that A◦0α ◦A

◦p
α = A◦pα

∀A◦pα ∈ mG(Aα (oαx )) ∃A◦−pα ∈ mG(Aα (oαx )) such that A◦pα ◦A
◦−p
α = A◦0α

∀A◦pα ,A
◦q
α ∈ mG(Aα (oαx )) it is fulfilled that A◦pα ◦A

◦q
α = A◦qα ◦A

◦p
α

. (13)

2

Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.1, March 2022

18



From the previous theorem, it is possible to define the following group of fractional matrix operators [16]:

mGFIM (α) :=
⋃

oαx ∈mMO∞,ux,α (h)

mG(Aα (oαx )) , (14)

where ∀A◦pi,α ,A
◦q
j,α ∈ mGFIM (α), with i , j, the following property is defined

A
◦p
i,α ◦A

◦q
j,α = A◦1k,α := Ak,α

(
o
pα
i,x ◦ o

qα
j,x

)
, p,q ∈Z \ {0} , (15)

as a consequence, it is fulfilled that

∀A◦1k,α ∈ mGFIM (α) such that Ak,α
(
oαk,x

)
= Ak,α

(
o
pα
i,x ◦ o

qα
j,x

)
∃A◦rk,α = A◦(r−1)

k,α ◦A◦1k,α = Ak,α
(
o
rpα
i,x ◦ o

rqα
j,x

)
. (16)

Therefore, if ΦFIM denotes the iteration function of some fractional iterative method [16], it is possible to
obtain the following result:

Let α0 ∈R \Z ⇒ ∀A◦1α0
∈ mGFIM (α) ∃ΦFIM = ΦFIM (Aα0

) ∴ ∀Aα0
∃{ΦFIM (Aα) : α ∈R \Z} . (17)

So, from the previous result, it is possible to define different sets that allow characterizing different fractional
iterative methods. For example, the fractional Newton-Raphson method may be characterized through the fol-
lowing set [16, 17]:

mGFNR(α) := mGFIM (α)∩
{
oαx : ∃A−1

h,α = Aα (oαx ) ◦ATα (h)
}
, (18)

while the fractional pseudo-Newton method may be characterized through the following set [18, 19]:

mGFPN (α) := mGFIM (α)∩
{
oαx : oαk c , 0 ∀c ∈R \ {0} and ∀k ≥ 1

}
, (19)

as a consequence, the fractional quasi-Newton method may be characterized through the following set of
fractional matrix operators [14, 20]:

mGFQN (α) := mGFNR(α)∩mGFPN (α). (20)

Before continuing it is necessary to define the following corollary:

Corollary 1. Let f : Ω ⊂ R
m → R

m be a function with a point ξ ∈Ω such that ‖f (ξ)‖ = 0, and let h : Ω ⊂ R
m → R

m

be a function such that h(1)(x) = f (1)(x) ∀x ∈ B(ξ;δ). So, ∀oαx ∈ mO1
x,α(h) such that Aα (oαx ) ∈ mGFNR(α), there exists

A−1
h,α = Aα (oαx ) ◦ATα (h) such that it fulfills the following condition

lim
α→1

Ah,α(x) =
(
f (1)(x)

)−1
∀x ∈ B(ξ;δ). (21)

Then, defining the following function

αf ([x]k ,x) :=

 α, if |[x]k | , 0 and ‖f (x)‖ > δ0

1, if |[x]k | = 0 or ‖f (x)‖ ≤ δ0
, (22)

the fractional quasi-Newton method accelerated may be defined and classified through the following set of
matrices [15]:

{
Ah,αf = Ah,αf

(
A◦1α

)
: A◦1α ∈ mGFQN (α) and lim

α→1
Ah,α(x) =

(
f (1)(x)

)−1
with Ah,αf (x) =

(
[Ah,αf ]jk(x)

)}
. (23)

To end this section, it is worth mentioning that the fractional quasi-Newton method accelerated has been used
in the study for the construction of hybrid solar receivers [15], and that in recent years there has been a growing
interest in fractional operators and their properties for solving nonlinear algebraic equation systems [17, 21–28].
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2. Programming Code of Fractional Quasi-Newton Method Accelerated

The following code was implemented in Python 3 and requires the following packages:

1 import math as mt

2 import numpy as np

3 from numpy import linalg as la

For simplicity, a two-dimensional vector function is used to implement the code, that is, f : Ω ⊂ R
2 → R

2,
which may be denoted as follows:

f (x) =
(
[f ]1(x)

[f ]2(x)

)
, (24)

where [f ]i : Ω ⊂R
2→R ∀i ∈ {1,2}. Then considering a function Φ : (R\Z)×Cn→C

n, a variant of the fractional
quasi-Newton method may be denoted as follows [15, 16]:

xi+1 := Φ(α,xi) = xi −Ahf ,αf (xi)f (xi), i = 0,1,2 · · · , (25)

where Ahf ,αf (xi) is a matrix evaluated in the value xi , which is given by the following expression

Ahf ,αf (xi) =
(
[Ahf ,αf ]jk(xi)

)
:=

(
o
αf ([xi ]k ,xi )
k [hf ]j (x)

)−1

xi
, (26)

with hf (x) := f (xi) + f (1)(xi)(x − xi). It is worth mentioning that one of the main advantages of fractional
iterative methods is that the initial condition x0 can remain fixed, with which it is enough to vary the order α
of the fractional operators involved until generating a sequence convergent {xi}i≥1 to the value ξ ∈ Ω. Since the
order α of the fractional operators is varied, different values of α can generate different convergent sequences to
the same value ξ but with a different number of iterations. So, it is possible to define the following set

Convδ(ξ) :=
{
Φ : lim

x→ξ
Φ(α,x) = ξα ∈ B(ξ;δ)

}
, (27)

which may be interpreted as the set of fractional fixed-point methods that define a convergent sequence {xi}i≥1
to some value ξα ∈ B(ξ;δ). So, denoting by card(·) the cardinality of a set, under certain conditions it is possible to
prove the following result (see reference [16], proof of Theorem 2):

card(Convδ(ξ)) = card(R) , (28)

from which it follows that the set (27) is generated by an uncountable family of fractional fixed-point methods.
Before continuing, it is necessary to define the following corollary [16]:

Corollary 2. Let Φ : (R \Z) ×Cn → C
n be an iteration function such that Φ ∈ Convδ(ξ). So, if Φ has an order of

convergence of order (at least) p in B(ξ;1/2), for some m ∈ N, there exists a sequence {Pi}i≥m ∈ B(p;δK ) given by the
following values

Pi =
log(‖xi − xi−1‖)

log(‖xi−1 − xi−2‖)
, (29)

such that it fulfills the following condition:

lim
i→∞

Pi → p,

and therefore, there exists at least one value k ≥m such that

Pk ∈ B(p;ε). (30)
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The previous corollary allows estimating numerically the order of convergence of an iteration function Φ that
generates at least one convergent sequence {xi}i≥1. On the other hand, the following corollary allows characterizing
the order of convergence of an iteration function Φ through its Jacobian matrix Φ (1) [16, 28]:

Corollary 3. Let Φ : (R \Z)×Cn→ C
n be an iteration such that Φ ∈ Convδ(ξ). So, if Φ has an order of convergence of

order (at least) p in B(ξ;δ), it is fulfilled that:

p :=


1, if lim

x→ξ

∥∥∥Φ (1)(α,x)
∥∥∥ , 0

2, if lim
x→ξ

∥∥∥Φ (1)(α,x)
∥∥∥ = 0

. (31)

Before continuing, it is necessary to mention that what is shown below is an extremely simplified way of how
a fractional iterative method should be implemented, a more detailed description, as well as some applications,
may be found in the references [14–18, 28–30]. Considering the following notation:

ErrDom :=
{
‖xi − xi−1‖2

}
i≥1
, ErrIm :=

{
‖f (xi)‖2

}
i≥1
, X :=

{
xi
}
i≥1
, (32)

it is possible to implement a particular case of the multidimensional fractional quasi-Newton method acceler-
ated through recursive programming using the following functions:

1 def Dfrac(α,µ,x):
2 s=µ-α
3 if µ>-1:
4 return (mt.gamma(µ+1)/mt.gamma(s+1))*pow(complex(x),s) if mt.ceil(s)-s>0 or s>-1 else 0

5

6 def αf(α,xk,normf):
7 δ0=3
8 return α if abs(xk)>0 and normf>δ0 else 1

9

10 def FractionalQuasiNewton(ErrDom,ErrIm,X,α,x0):
11 Tol=pow(10,-5)

12 Lim=pow(10,2)

13 InvA=InvAhfαf(α,x0)
14

15 if abs(la.det(InvA))>0:

16 x1=x0-np.matmul(la.inv(InvA),f(x0))

17 ED=la.norm(x1-x0)

18

19 if ED>0:

20 EI=la.norm(f(x1))

21

22 ErrDom.append(ED)

23 ErrIm.append(EI)

24 X.append(x1)

25 N=len(X)

26

27 if max(ED,EI)>Tol and N<Lim:

28 ErrDom,ErrIm,X=FractionalQuasiNewton(ErrDom,ErrIm,X,α,x1)
29

30 return ErrDom,ErrIm,X

To implement the above functions, it is necessary to follow the steps shown below:

i) A function must be programmed together with its Jacobian matrix.
1 def f(x):

2 y=np.zeros((2,1)).astype(complex)

3 y[0]=np.sin(x[0])*pow(x[0],2)+ np.cos(x[1])*pow(x[1],3)-5

4 y[1]=np.cos(x[0])*pow(x[0],3)-np.sin(x[1])*pow(x[1],2)-7

5 return y

6

7 def Df(x):

8 y=np.zeros((2,2)).astype(complex)

9 y[0][0]=2*np.sin(x[0])*x[0]+np.cos(x[0])*pow(x[0],2)

10 y[0][1]=3*np.cos(x[1])*pow(x[1],2)-np.sin(x[1])*pow(x[1],3)

11 y[1][0]=3*np.cos(x[0])*pow(x[0],2)-np.sin(x[0])*pow(x[0],3)

12 y[1][1]=-2*np.sin(x[1])*x[1]-np.cos(x[1])*pow(x[1],2)

13 return y
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ii) The matrix A−1
hf ,αf

must be programmed.

1 def InvAhfαf(α,x):
2 f0=f(x)

3 Df0=Df(x)

4 normf=la.norm(f0)

5

6 h11=f0[0]

7 h1x=Df0[0][0]

8 h1y=Df0[0][1]

9

10 h21=f0[1]

11 h2x=Df0[1,0]

12 h2y=Df0[1,1]

13

14 α1=αf(α,x[0],normf)
15 α2=αf(α,x[1],normf)
16

17 y=np.zeros((2,2)).astype(complex)

18 y[0][0]=(h11-h1x*x[0])*Dfrac(α1,0,x[0])+h1x*Dfrac(α1,1,x[0])
19 y[0][1]=(h11-h1y*x[1])*Dfrac(α2,0,x[1])+h1y*Dfrac(α2,1,x[1])
20 y[1][0]=(h21-h2x*x[0])*Dfrac(α1,0,x[0])+h2x*Dfrac(α1,1,x[0])
21 y[1][1]=(h21-h2y*x[1])*Dfrac(α2,0,x[1])+h2y*Dfrac(α2,1,x[1])
22 return y

iii) Three empty vectors, a fractional order α, and an initial condition x0 must be defined before implementing
the function FractionalQuasiNewton.

1 ErrDom=[]

2 ErrIm=[]

3 X=[]

4

5 α=-1.598394
6

7 x0=2.25*np.ones((2,1))

8

9 ErrDom,ErrIm,X=FractionalQuasiNewton(ErrDom,ErrIm,X,α,x0)

When implementing the previous steps, if the fractional order α and initial condition x0 are adequate to ap-
proach a zero of the function f , results analogous to the following are obtained:

i [xi ]1 [xi ]2 ‖xi − xi−1‖2 ‖f (xi )‖2
1 −4.735585327165831 −1.0702683350651077 7.73450607213871 18.837153585624463
2 −4.735751446234244− 0.0005201775227302893i −1.4523845601521614− 1.1965409706379078i 1.2560746005194463 15.550666339012087
3 −4.737171940180769− 0.0028188821384910173i −1.3067374776351186− 1.170476096763722i 0.1479856484317521 18.23359009045263
4 −4.738070885342333− 0.004902921292654457i −1.05437666853289− 1.1528378083779465i 0.2529866370176711 21.800921293297737
5 −4.738147107048297− 0.00657969269076015i −0.5382886896737178− 1.218835536081686i 0.5202934934794708 25.01898906299888
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

12 −4.729750257024641− 0.004361695131642888i 0.5957441863423869− 1.7216488909240522i 0.00634398412485266 3.0045420137336363
13 −4.7286434095025385− 0.003971241380369586i 0.5950641918651102− 1.724723641739149i 0.0033606622313366525 2.9995701108099517
14 −4.730316596597024 + 0.024479642825272506i 0.5937988516457116− 1.7278144278472323i 0.028695059013230096 0.05460293489272963
15 −4.730869316300165 + 0.024410915392472112i 0.5939080267113869− 1.7280910966350023i 0.0006314169330564483 2.0574246244311213e − 05
16 −4.730869106529115 + 0.02441096901812828i 0.593907920270218− 1.7280909090943382i 3.0558276730499713e − 07 3.650221618055468e − 12

Table 1: Results obtained using the fractional quasi-Newton method accelerated [15].

Therefore, from the Corollary 2, the following result is obtained:

P16 =
log(‖x16 − x15‖)
log(‖x15 − x14‖)

≈ 2.0361 ∈ B(p;δK ),

which is consistent with the Corollary 3, since if ΦFQN ∈ Convδ(ξ), in general ΦFQN (Ahf ,αf ) fulfills the follow-
ing condition (see reference [28], proof of Proposition 1):

lim
x→ξ

∥∥∥∥Φ (1)
FQN (1,x)

∥∥∥∥ = 0, (33)

from which it is concluded that the fractional quasi-Newton method accelerated has an order of convergence
(at least) quadratic in B(ξ;δ).
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