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Code of the multidimensional fractional
quasi-Newton method using recursive programming
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Abstract

The following paper presents one way to define and classify the fractional quasi-Newton method through
a group of fractional matrix operators, as well as a code written in recursive programming to implement this
method, which through minor modifications, can be implemented in any fractional fixed-point method that allows
solving nonlinear algebraic equation systems.
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1. FractioNAL Quasi-NEwToN METHOD

To begin this section, it is necessary to mention that due to the large number of fractional operators that may
exist [1-6], some sets must be defined to fully characterize the fractional quasi-Newton method! [7,8]. Tt is
worth mentioning that characterizing elements of fractional calculus through sets is the main idea behind of the
methodology known as fractional calculus of sets [9]. So, considering a scalar function h : R” — IR and the
canonical basis of IR denoted by {é;};-, it is possible to define the following fractional operator of order a using
Einstein notation B

03 h(x) := érof h(x). (1)

Therefore, denoting by d} the partial derivative of order n applied with respect to the k-th component of the
vector x, using the previous operator it is possible to define the following set of fractional operators

! (h) = {o,‘f : 0{h(x) and lim of h(x) = Ih(x) Yk > 1}, 2)

whose complement may be defined as follows
Obg(h):= {off : Jofh(x) Yk >1 and lim of h(x) # dy'h(x) in at least one value k > 1}, (3)
a—n

as a consequence, it is possible to define the following set

Ot o (1) := (O% (M UOLE (M) N {of + ofic#0VYceR\{0} and Vk>1}. (4)

X,

On the other hand, considering a linear function h: QO Cc R" — IR™, it is possible to define the following set

. o (h) = {Og : Oz c QU ([h]k) Vk < m}’ (5)
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where [h]; : O CR™ — R denotes the k-th component of the function . So, it is possible to define the following
set of fractional operators

m MO (1) := () Okt o (h), (6)
keZ

which under the classical Hadamard product it is fulfilled that

02 0 h(x) := h(x) Y02 € ,y MO, (h). (7)

Then, considering that for each operator 0¢ it is possible to define the following fractional matrix operator

Aa(0%) = ([Aal0D)]jk) = (0f ), (8)

it is possible to define the following set of fractional operators

-1
W IMOZS (1) i= o MO () {of : 3 (4, (o) 0 AT ()|, o
where A, (h) = ([A h)]jx ) = ([h]k) On the other hand, considering that when using the classical Hadamard
product in general ok 00l" = og(cpw) It is possible to define the following modified Hadamard product [9]:

pa _ qa
ix ©0j =

{ 0’7’ %o o‘?’a if i # j (Hadamard product of type horizontal)

if i = j (Hadamard product of type vertical)

with which it is possible to obtain the following theorem:

Theorem 1. Let 0¢ be a fractional operator such that 0% € ,, MOy (h). So, considering the modified Hadamard product
given by (10), it is possible to define the following set offmctzonal matrix operator

mG(Aq(0):={AY = A4 (o)) : reZ and AT =([A7]jx) = (0}")}, (11)

which corresponds to the Abelian group generated by the operator A, (0%).

Proof. It should be noted that due to the way the set (11) is defined, just the Hadamard product of type vertical is
applied among its elements. So, VAL, A € ,,G(A, (0%)) it is fulfilled that

AT 0 45T = (1AL ) o (142"5) = (o ™7 ) = (1427 1) = 4577, (12)

with which it is possible to prove that the set (11) fulfills the following properties, which correspond to the
properties of an Abelian group:

VAL, AP A € G (A4 (0F)) itis fulfilled that (Ag” 0 A")o AT =AY o (Ag 0 AY)
AP €,,G (A, (02)) such that VAY €,,G (A, (0%)) it is fulfilled that A0 0 A = Af

VAY € ,,G(Ay (0%)) AAG P €,,G (AL (0%)) such that A o Ay P = A0
VAL, A € ,,G (A, (09)) itis fulfilled that Ay o Ag! = Agl 0 A

X

(13)
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From the previous theorem, it is possible to define the following group of fractional matrix operators [9]:

wGron(@):= (] wG(Aq(of), (14)
0§ € IMOG 0 ()

where VAP A?‘L € w Grgn (@), with i # j, the following property is defined

La’ g,

AP oA = AL = Apa (o5 0 o;.{‘jg), p,q€Z\ {0}, (15)

as a consequence, it is fulfilled that
o a a ° o(r—1 ° rpa rqa
VAk’la € »Gpon (@) such that Ay , (ol‘f’x) =Arq (oix o 0?,)‘) AL, = A, ) oAk’la =Ajq (oii o szc ) (16)

Then, it is possible to obtain the following result:

VA € ,,Gron(a) AL, = Ay (0F) 0 AL (h), (17)

X a

and defining the following function

«a, if |[x]k| =0
, = , 18
Bla,[x]k) { 1, i (]l =0 (18)
the fractional quasi-Newton method may be defined and classified through the following set of matrices:
{Anp=Ang(A3!) : A3 € uGron(@) and App(x) = ([Appljx(x))}- (19)

Therefore, if ®rgy denotes the iteration function of the fractional quasi-Newton method, it is possible to obtain
the following result:
Let 2 %)) EIR\Z = VAZ}] S mGFQN(a) EIq)FQN ZCDFQN(AO(O) VAao EI{CDFQN(A(X) L a E]R\Z} (20)

To end this section, it is worth mentioning that the fractional quasi-Newton method has been used in the study
for the construction of hybrid solar receivers [8], and that in recent years there has been a growing interest in
fractional operators and their properties for solving nonlinear algebraic equation systems [7,10-18].

2. ProGrRAMMING CoDE OF FRACTIONAL QUASI-NEWTON METHOD

The following code was implemented in Python 3 and requires the following packages:

import math as mt

2> import numpy as np

5 from numpy import linalg as la

For simplicity, a two-dimensional vector function is used to implement the code, that is, f : Q ¢ R? — R?,
which may be denoted as follows:

feo=(L14),

[f]2(x)

where [f]; : Q € R> — R Vi € {1,2}. Then considering a function @ : (R \ Z) x C" — C", the fractional quasi-
Newton method may be denoted as follows [8,9]:

(21)

Xiy1 = Qa, x;) = x; = Ag, p(xi)f (i), 1=0,1,2---, (22)
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where Ag  (x;) is a matrix evaluated in the value x;, which is given by the following expression

-1
Aggp(x) = (1A gy plie(x0) = (of Wiy it) (23)

Xi
with gf( = f(x;) + fW(x;)x. It is worth mentioning that one of the main advantages of fractional iterative
methods is that the 1n1t1a1 condltlon Xo can remain fixed, with which it is enough to vary the order a of the
fractional operators involved until generating a sequence convergent {x;},,; to the value £ € Q). Since the order a
of the fractional operators is varied, different values of & can generate different convergent sequences to the same
value & but with a different number of iterations. So, it is possible to define the following set

x—&

Convg(&) := {(D : lim O(a,x) =&, € 3(5;5)}, (24)

which may be interpreted as the set of fractional fixed-point methods that define a convergent sequence {x;},;
to some value &, € B(&;6). So, denoting by card (-) the cardinality of a set, under certain conditions it is possible to
prove the following result (see reference [9], proof of Theorem 2):

card (Convg(&)) = card (R), (25)

from which it follows that the set (24) is generated by an uncountable family of fractional fixed-point methods.
Before continuing, it is necessary to define the following corollary [9]:

Corollary 1. Let © : (R\ Z) x C" — C" be an iteration function such that ® € Convg(E). So, if © has an order of
convergence of order (at least) p in B(&;1/2), for some m € IN, there exists a sequence {P;};,, € B(p; k) given by the
following values

i>m

log (||x; —x;_1]])
log (|lxi—1 _xi—2||),

(26)

i=

such that it fulfills the following condition:

lim P, — p,

i—o00

and therefore, there exists at least one value k > m such that
P, € B(p;e). (27)

The previous corollary allows estimating numerically the order of convergence of an iteration function @ that
generates at least one convergent sequence {x;};5,. On the other hand, the following corollary allows characterizing
the order of convergence of an iteration function ® through its Jacobian matrix ®!) [9,18]:

Corollary 2. Let @ : (R\Z) x C" — C" be an iteration such that ® € Convs(&). So, if @ has an order of convergence of
order (at least) p in B(&;9), it is fulfilled that:

1, if lim ||©™(a,x)|| = 0
x—&
pi= . (28)
2, if lim ||CD(1)(a,x)|| =0
x—&

Before continuing it is necessary to mention that what is shown below is an extremely simplified way of how
a fractional iterative method should be implemented, a more detailed description, as well as some applications,
may be found in the references [7-9,17-19]. Considering the following notation:

Eerom::{||xi—xi_1||2}i21, ErrIm:={||f (x; “2}1>1 X::{xi}i21, (29)

it is possible to implement a particular case of the multidimensional fractional quasi-Newton method through
recursive programming using the following functions:

12
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1 def Dfrac(a,p,x):
2 s=p-a
if u>-1:
4 return (mt.gamma(u+1)/mt.gamma(s+1))*pow(complex(x),s) if mt.ceil(s)-s>0 or s>-1 else 0

¢ def B(a,x):
7 return a if abs(x)>0 else 1

v def FractionalQuasiNewton(ErrDom,ErrIm,X,a,x0):
10 Tol=pow(10,-5)

1 Lim=pow(10,2)

12 InvA=InvAgfp(a,x0)

14 if abs(la.det(InvA))>0:
15 x1=x0-np.matmul (la.inv(InvA),f(x0))
16 ED=1a.norm(x1-x0)

18 if ED>0:
19 EI=la.norm(f(x1))

ErrDom.append(ED)
ErrIm.append(EI)
23 X.append(x1)
24 N=len(X)

if max(ED,EI)>Tol and N<Lim:
27 ErrDom,ErrIm,X=FractionalQuasiNewton(ErrDom,ErrIm,X,a,x1)

29 return ErrDom,ErrIm,X

To implement the above functions, it is necessary to follow the steps shown below:

i) A function must be programmed together with its Jacobian matrix.

1 def f(x):

2 y=np.zeros((2,1)).astype(complex)

3 y[0]=np.sin(x[0])*pow(x[0],2)+ np.cos(x[1])*pow(x[1],3)-5
4 y[1]=np.cos(x[0])*pow(x[0],3)-np.sin(x[1])*pow(x[1],2)-7

5 return y

. def Df(x):

8 y=np.zeros((2,2)).astype(complex)

9 y[0][0]=2%np.sin(x[0])*x[0]+np.cos(x[0])*pow(x[0],2)

10 y[0][1]=3*np.cos(x[1])*pow(x[1],2)-np.sin(x[1])=*pow(x[1],3)
11 y[1][0]=3*np.cos(x[0])*pow(x[0],2)-np.sin(x[0])=*pow(x[0],3)
12 y[1]1[1]=-2*np.sin(x[1])*x[1]-np.cos(x[1])*pow(x[1],2)

13 return vy

ii) The matrix Agfl’ p must be programmed.

1 def InvAgff(a,x):
2 f0=£f(x)
Df0=Df (x)

5 g11=£0[0]
. g1x=Df0[0][0]
7 gly=Df0O[O0][1]

9 g21=f0[1]
10 g2x=Df0[1,0]
11 92y=Df0[1,1]

13 B1=B(a,x[0])
14 B2=p(a,x[1])

16 y=np.zeros((2,2)).astype(complex)

17 y[0][0]=(g11+gly*x[1])+Dfrac(p1,0,x[0])+ gix*xDfrac(pf1,1,x[0])
18 y[0][1]=(g11+g1xxx[0])*Dfrac(p2,0,x[1])+ gly+Dfrac(p2,1,x[1])
19 y[11[0]=(g21+g2y*x[1])+Dfrac(p1,0,x[0])+ g2x*Dfrac(pf1,1,x[0])
20 y[11[1]=(g21+92x*x[0])+Dfrac(B2,0,x[1])+ g2yxDfrac(pf2,1,x[1])

21 return y
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iii) Three empty vectors, a fractional order «, and an initial condition xy, must be defined before implementing
the function FractionalQuasiNewton.

ErrDom=[ ]
ErrIm=[]
» X=[1]

5 a=-0.14154

7 x0=1.87*np.ones((2,1))

> ErrDom ,ErrIm,X=FractionalQuasiNewton(ErrDom,ErrIm,X,a,x0)

When implementing the previous steps, if the fractional order « and initial condition x are adequate to ap-
proach a zero of the function f, results analogous to the following are obtained:

i [xil1 [xi]2 llxi = xi—1ll2 If ()l

1 2.253615105769526 1.1942449832449582 0.7770491567746352 15.554324370388906

2 ~3.9004625603638927 7.157573208896508 8.569361437566664 240.708834467148

3 | ~1.5541583533037069 — 1.1179838230007044i  4.4928672793164015 — 2.962300422113517¢ — 15 3.722323058480951 27.692687964920736

4 | -1.944385547081847 — 1.0897773339058576i 4.940730623672673 — 0.13817042653542763i 0.6105288779230554 29.219708233069287

5 | -1.8475774337627011 - 1.1801485625387642i  4.855392369520536 +0.009503969164296189i 0.21593775616146188 8.81592186304761

6 | -1.7960511251389712—1.250743007942112i  4.8220026103345015 + 0.10421795336899867i 0.13313208112481426 5.23303705045184

41 | -1.76751483239573 — 1.2381890934335078i 4.798857098280522 + 0.06489785685468008i 9.746530597591146e—07  7.151481519961957¢ — 05
42 | —1.7675150566379345 — 1.2381893834982014i  4.798857321824474 + 0.06489811797226702i 5.025697814069152¢~07  8.392901211001586¢ — 05
43 | —1.7675149484191435 - 1.2381895859611525i  4.798857156145471 + 0.06489836899944432i 3.783737954105193¢—07  6.69477928230414¢ — 05
44 | —1.7675147384551197 — 1.2381895971905954i  4.798856853548587 + 0.06489842891980367i  3.7331798114472574¢—07  3.9363864098046455¢ — 05
45 | —1.7675145927812685 — 1.2381894810754603i 4.798856620324174 + 0.0648983327382783i 3.1360501942818643¢ — 07  1.4419381217770664¢ — 05
46 | -1.767514555643636 — 1.2381893489293105i 4.798856526732281 + 0.06489819878007232i  2.1341521058220815¢— 07  4.62494486008204¢ — 06

Table 1: Results obtained using the fractional quasi-Newton method [8].

Therefore, from the Corollary 1, the following result is obtained:

_ log (llx46 — x4sll)

= z1.0257€B( ;0K),
Tog (a5 — xaal) p3ox)

46

which is consistent with the Corollary 2, since if ®roy € Convs(E), in general Opgy fulfills the following
condition (see reference [18], proof of Proposition 1):

lim [@f 3 (e, )] =0, (30)

x—E&
from which it is concluded that the fractional quasi-Newton method has an order of convergence (at least)
linear in B(&;0).
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