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Abstract

The following paper presents one way to define and classify the fractional pseudo-Newton method through
a group of fractional matrix operators, as well as a code written in recursive programming to implement this
method, which through minor modifications, can be implemented in any fractional fixed-point method that allows
solving nonlinear algebraic equation systems.
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1. Fractional Pseudo-Newton Method

To begin this section, it is necessary to mention that due to the large number of fractional operators that may
exist [1–6], some sets must be defined to fully characterize the fractional pseudo-Newton method1 [7–10]. It is
worth mentioning that characterizing elements of fractional calculus through sets is the main idea behind of the
methodology known as fractional calculus of sets [11]. So, considering a scalar function h : Rm → R and the
canonical basis of Rm denoted by {êk}k≥1, it is possible to define the following fractional operator of order α using
Einstein notation

oαx h(x) := êko
α
k h(x). (1)

Therefore, denoting by ∂nk the partial derivative of order n applied with respect to the k-th component of the
vector x, using the previous operator it is possible to define the following set of fractional operators

On
x,α(h) :=

{
oαx : ∃oαk h(x) and lim

α→n
oαk h(x) = ∂nkh(x) ∀k ≥ 1

}
, (2)

whose complement may be defined as follows

On,c
x,α(h) :=

{
oαx : ∃oαk h(x) ∀k ≥ 1 and lim

α→n
oαk h(x) , ∂nkh(x) in at least one value k ≥ 1

}
, (3)

as a consequence, it is possible to define the following set

On,u
c,x,α(h) :=

(
On
x,α(h)∪On,c

x,α(h)
)
∩

{
oαx : oαk c , 0 ∀c ∈R \ {0} and ∀k ≥ 1

}
. (4)

On the other hand, considering a constant function h : Ω ⊂R
m→R

m, it is possible to define the following set

mOn,u
c,x,α(h) :=

{
oαx : oαx ∈On,u

c,x,α ([h]k) ∀k ≤m
}
, (5)
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where [h]k : Ω ⊂R
m→R denotes the k-th component of the function h. So, it is possible to define the following

set of fractional operators

mMO∞,uc,x,α(h) :=
⋂
k∈Z

mOk,u
c,x,α(h), (6)

which under the classical Hadamard product it is fulfilled that

o0
x ◦ h(x) := h(x) ∀oαx ∈ mMO∞,uc,x,α(h). (7)

Considering that when using the classical Hadamard product in general opαx ◦ o
qα
x , o

(p+q)α
x . It is possible to

define the following modified Hadamard product [11]:

o
pα
i,x ◦ o

qα
j,x :=

 o
pα
i,x ◦ o

qα
j,x , if i , j (Hadamard product of type horizontal)

o
(p+q)α
i,x , if i = j (Hadamard product of type vertical)

, (8)

and considering that for each operator oαx it is possible to define the following fractional matrix operator

Aα(oαx ) =
(
[Aα(oαx )]jk

)
=

(
oαk

)
, (9)

it is possible to obtain the following theorem:

Theorem 1. Let oαx be a fractional operator such that oαx ∈ mMO∞,uc,x,α(h). So, considering the modified Hadamard product
given by (8), it is possible to define the following set of fractional matrix operator

mG(Aα (oαx )) :=
{
A◦rα = Aα (orαx ) : r ∈Z and A◦rα =

(
[A◦rα ]jk

)
:=

(
orαk

)}
, (10)

which corresponds to the Abelian group generated by the operator Aα (oαx ).

Proof. It should be noted that due to the way the set (10) is defined, just the Hadamard product of type vertical is
applied among its elements. So, ∀A◦pα ,A

◦q
α ∈ mG(Aα (oαx )) it is fulfilled that

A
◦p
α ◦A

◦q
α =

(
[A◦pα ]jk

)
◦
(
[A◦qα ]jk

)
=

(
o

(p+q)α
k

)
=

(
[A◦(p+q)
α ]jk

)
= A◦(p+q)

α , (11)

with which it is possible to prove that the set (10) fulfills the following properties, which correspond to the
properties of an Abelian group:


∀A◦pα ,A

◦p
α ,A◦rα ∈ mG(Aα (oαx )) it is fulfilled that

(
A
◦p
α ◦A

◦q
α

)
◦A◦rα = A◦pα ◦

(
A
◦q
α ◦A◦rα

)
∃A◦0α ∈ mG(Aα (oαx )) such that ∀A◦pα ∈ mG(Aα (oαx )) it is fulfilled that A◦0α ◦A

◦p
α = A◦pα

∀A◦pα ∈ mG(Aα (oαx )) ∃A◦−pα ∈ mG(Aα (oαx )) such that A◦pα ◦A
◦−p
α = A◦0α

∀A◦pα ,A
◦q
α ∈ mG(Aα (oαx )) it is fulfilled that A◦pα ◦A

◦q
α = A◦qα ◦A

◦p
α

. (12)

From the previous theorem, it is possible to define the following group of fractional matrix operators [11]:

mGFPN (α) :=
⋃

oαx ∈mMO∞,uc,x,α(h)

mG(Aα (oαx )) , (13)

where ∀A◦pi,α ,A
◦q
j,α ∈ mGFPN (α), with i , j, the following property is defined
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A
◦p
i,α ◦A

◦q
j,α = A◦1k,α := Ak,α

(
o
pα
i,x ◦ o

qα
j,x

)
, p,q ∈Z \ {0} , (14)

as a consequence, it is fulfilled that

∀A◦1k,α ∈ mGFPN (α) such that Ak,α
(
oαk,x

)
= Ak,α

(
o
pα
i,x ◦ o

qα
j,x

)
∃A◦rk,α = A◦(r−1)

k,α ◦A◦1k,α = Ak,α
(
o
rpα
i,x ◦ o

rqα
j,x

)
. (15)

Then, it is possible to obtain the following result:

∀A◦1α ∈ mGFPN (α) ∃Aε,α := A◦1α ◦ Im + εIm, (16)

where Im denotes the identity matrix of m ×m and ε is a positive constant � 1. So, defining the following
function

β(α, [x]k) :=
{
α, if |[x]k | , 0

1, if |[x]k | = 0
, (17)

the fractional pseudo-Newton method may be defined and classified through the following set of matrices:

{
Aε,β = Aε,β

(
A◦1α

)
: A◦1α ∈ mGFPN (α) and Aε,β(x) =

(
[Aε,β]jk(x)

)}
. (18)

Therefore, if ΦFPN denotes the iteration function of the fractional pseudo-Newton method, it is possible to
obtain the following result:

Let α0 ∈R \Z ⇒ ∀A◦1α0
∈ mGFPN (α) ∃ΦFPN = ΦFPN (Aα0

) ∴ ∀Aα0
∃{ΦFPN (Aα) : α ∈R \Z} . (19)

To end this section, it is worth mentioning that the fractional pseudo-Newton method has been used in the
study for the construction of hybrid solar receivers [7, 8, 12], and that in recent years there has been a growing
interest in fractional operators and their properties for solving nonlinear algebraic equation systems [13–22].

2. Programming Code of Fractional Pseudo-Newton Method

The following code was implemented in Python 3 and requires the following packages:

1 import math as mt

2 import numpy as np

3 from numpy import linalg as la

For simplicity, a two-dimensional vector function is used to implement the code, that is, f : Ω ⊂ R
2 → R

2,
which may be denoted as follows:

f (x) =
(
[f ]1(x)

[f ]2(x)

)
, (20)

where [f ]i : Ω ⊂ R
2→ R ∀i ∈ {1,2}. Then considering a function Φ : (R \Z)×Cn→ C

n, the fractional pseudo-
Newton method may be denoted as follows [11, 23]:

xi+1 := Φ(α,xi) = xi −Aε,β(xi)f (xi), i = 0,1,2 · · · , (21)

where Aε,β(xi) is a matrix evaluated in the value xi , which is given by the following expression

Aε,β(xi) =
(
[Aε,β]jk(xi)

)
:=

(
o
β(α,[xi ]k )
k δjk + εδjk

)
xi
, (22)
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with δjk the Kronecker delta. It is worth mentioning that one of the main advantages of fractional iterative
methods is that the initial condition x0 can remain fixed, with which it is enough to vary the order α of the
fractional operators involved until generating a sequence convergent {xi}i≥1 to the value ξ ∈Ω. Since the order α
of the fractional operators is varied, different values of α can generate different convergent sequences to the same
value ξ but with a different number of iterations. So, it is possible to define the following set

Convδ(ξ) :=
{
Φ : lim

x→ξ
Φ(α,x) = ξα ∈ B(ξ;δ)

}
, (23)

which may be interpreted as the set of fractional fixed-point methods that define a convergent sequence {xi}i≥1
to some value ξα ∈ B(ξ;δ). So, denoting by card(·) the cardinality of a set, under certain conditions it is possible to
prove the following result (see reference [11], proof of Theorem 2):

card(Convδ(ξ)) = card(R) , (24)

from which it follows that the set (23) is generated by an uncountable family of fractional fixed-point methods.
Before continuing, it is necessary to define the following corollary [11]:

Corollary 1. Let Φ : (R \Z) ×Cn → C
n be an iteration function such that Φ ∈ Convδ(ξ). So, if Φ has an order of

convergence of order (at least) p in B(ξ;1/2), for some m ∈ N, there exists a sequence {Pi}i≥m ∈ B(p;δK ) given by the
following values

Pi =
log(‖xi − xi−1‖)

log(‖xi−1 − xi−2‖)
, (25)

such that it fulfills the following condition:

lim
i→∞

Pi → p,

and therefore, there exists at least one value k ≥m such that

Pk ∈ B(p;ε). (26)

The previous corollary allows estimating numerically the order of convergence of an iteration function Φ that
generates at least one convergent sequence {xi}i≥1. On the other hand, the following corollary allows characterizing
the order of convergence of an iteration function Φ through its Jacobian matrix Φ (1) [11, 22]:

Corollary 2. Let Φ : (R \Z)×Cn→ C
n be an iteration such that Φ ∈ Convδ(ξ). So, if Φ has an order of convergence of

order (at least) p in B(ξ;δ), it is fulfilled that:

p :=


1, if lim

x→ξ

∥∥∥Φ (1)(α,x)
∥∥∥ , 0

2, if lim
x→ξ

∥∥∥Φ (1)(α,x)
∥∥∥ = 0

. (27)

Before continuing, it is necessary to mention that what is shown below is an extremely simplified way of how
a fractional iterative method should be implemented. A more detailed description, as well as some applications,
may be found in the references [11,20–23]. Considering the particular case with Φ : (R\Z)×Rn→R

n, and defining
the following notation:

ErrDom :=
{
‖xi − xi−1‖2

}
i≥1
, ErrIm :=

{
‖f (xi)‖2

}
i≥1
, X :=

{
xi
}
i≥1
, (28)

it is possible to implement a particular case of the multidimensional fractional pseudo-Newton method through
recursive programming using the following functions [10]:
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1 def Dfrac(α,x):
2 return pow(x,-α)/mt.gamma(1-α) if abs(1-α)>0 else 0

3

4 def β(α,x):
5 return α if abs(x)>0 else 1

6

7 def Aεβ(α,x):
8 N=len(x)

9 y=np.zeros((N,N))

10 ε=pow(10,-4)
11 for i in range(0,N):

12 y[i][i]=Dfrac(β(α,x[i]),x[i])+ε
13 return y

14

15 def FractionalPseudoNewton(ErrDom,ErrIm,X,α,x0):
16 Tol=pow(10,-5)

17 Lim=pow(10,2)

18

19 x1=x0-np.matmul(Aεβ(α,x0),f(x0))
20 ED=la.norm(x1-x0)

21

22 if ED>0:

23 EI=la.norm(f(x1))

24

25 ErrDom.append(ED)

26 ErrIm.append(EI)

27 X.append(x1)

28 N=len(X)

29

30 if max(ED,EI)>Tol and N<Lim:

31 ErrDom,ErrIm,X=FractionalPseudoNewton(ErrDom,ErrIm,X,α,x1)
32

33 return ErrDom,ErrIm,X

To implement the above functions, it is necessary to follow the steps shown below:

i) A function must be programmed (information of the following nonlinear function may be found in the
reference [9]).

1 def f(x):

2 y=np.zeros((2,1))

3

4 a1=0.5355

5 a2=1.5808

6 a3=1.5355

7 a4=0.5808

8 a5=18.9753

9 a6=451474

10 a7=396499

11

12 d1=pow(x[0],a3)-pow(x[1],a3)

13 d2=pow(x[0],a4)-pow(x[1],a4)

14 d3=pow(x[0],a3+a4)-pow(x[1],a3+a4)

15

16 y[0]=x[0]-(a6/a5)+(a2*x[0]*pow(x[1],a3)*d2-a1*pow(x[0],a2)*d1)/(a1*a2*d3)

17 y[1]=x[1]-(a7/a5)+(a2*pow(x[0],a3)*x[1]*d2-a1*pow(x[1],a2)*d1)/(a1*a2*d3)

18 return y

ii) Three empty vectors, a fractional order α, and an initial condition x0 must be defined before implementing
the function FractionalPseudoNewton.

1 ErrDom=[]

2 ErrIm=[]

3 X=[]

4

5 α=-0.02705
6

7 x0=np.ones((2,1))

8 x0[0]=1

9 x0[1]=2

10

11 ErrDom,ErrIm,X=FractionalPseudoNewton(ErrDom,ErrIm,X,α,x0)
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When implementing the previous steps, if the fractional order α and initial condition x0 are adequate to ap-
proach a zero of the function f , results analogous to the following are obtained:

i [xi ]1 [xi ]2 ‖xi − xi−1‖2 ‖f (xi )‖2
1 24154.6890055726 21615.770565224655 32412.27808445575 3173.9427518435878
2 23797.525207771814 17409.867461022026 4221.040973551523 2457.2339691838274
3 27022.686583015326 16837.96263298479 3275.4756950243 1936.4252930355906
4 28968.497786158376 15149.13086241385 2576.4964559585133 1988.3049656277824
5 31513.395908759314 14371.120308833728 2661.1664502431686 1670.221737448303
6 33594.7029990163 13550.005464416314 2237.4245890480047 1489.2609462571957
...

...
...

...
...

61 41844.57086184946 11857.321286205206 6.11497121228039e − 05 2.0557739187213006e − 05
62 41844.5708629114 11857.321259325998 2.690017756661858e − 05 2.567920334469916e − 05
63 41844.57089334319 11857.321275572 3.449675719137571e − 05 1.2220011320189923e − 05
64 41844.57089188268 11857.32125964514 1.5993685206416137e − 05 1.4647204650186194e − 05
65 41844.57090877583 11857.3212696822 1.964996494386499e − 05 7.37448238916247e − 06
66 41844.57090683372 11857.32126021737 9.662028743039773e − 06 8.428415184912125e − 06

Table 1: Results obtained using the fractional pseudo-Newton method [10].

Therefore, from the Corollary 1, the following result is obtained:

P66 =
log(‖x66 − x65‖)
log(‖x65 − x64‖)

≈ 1.0655 ∈ B(p;δK ),

which is consistent with the Corollary 2, since if ΦFPN ∈ Convδ(ξ), in general ΦFPN fulfills the following
condition (see reference [22], proof of Proposition 1):

lim
x→ξ

∥∥∥∥Φ (1)
FPN (α,x)

∥∥∥∥ , 0, (29)

from which it is concluded that the fractional pseudo-Newton method has an order of convergence (at least)
linear in B(ξ;δ).
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