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ABSTRACT 

The main goal of this research is to give the complete conception about numerical integration including 

Newton-Cotes formulas and aimed at comparing the rate of performance or the rate of accuracy of 

Trapezoidal, Simpson’s 1/3, and Simpson’s 3/8. To verify the accuracy, we compare each rules 

demonstrating the smallest error values among them. The software package MATLAB R2013a is applied to 

determine the best method, as well as the results, are compared. It includes graphical comparisons 

mentioning these methods graphically. After all, it is then emphasized that the among methods considered, 
Simpson’s 1/3 is more effective and accurate when the condition of the subdivision is only even for solving  

a definite integral. 
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1. INTRODUCTION 

Integration, which is a process of measuring the area plotted on a graph by a function as follows, 
𝑏 

𝐼 = ∫  𝑓(𝑥)𝑑𝑥 
𝑎 

 

is the total value or summation of f(x) dx over the range from a to b. The system of estimating the 

value of a definite integral from the approximate numerical values of the integrand, known as 
numerical integration. A function of a single variable which is exerted in numerical integration is 

called quadrature as well as expresses the area under the curve f(x). Besides, there are no 

singularities of the integrand in the domain under the assumption and also numerical integration 
comprises a boarding family of algorithms for the sake of counting the numerical values of a 

definite integral. Nowadays, it is essential due to computers are too able to go through the 

analytic manner of integration, even associating between analytical schemes and computer 

processor. 
 

In 1915, the term 'Numerical Integration' had first demonstrated in the publication of A Course in 

Interpolation as well as Numeric Integration for the Mathematical Laboratory by David Gibb. 

There are several application fields in numerical integration as like applied mathematics, 
statistics, economics, and engineering, etc. Various methods are available in numerical 

integration, for example, Quadrature methods, Gaussian integration, Monte-Carlo integration, 

Adaptive Quadrature, and Euler-Maclaurin formula which are used to calculate those functions 
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𝑎 

that are not integrated so easily. The various formula of numerical integrations is recounted in the 
books of S.S. Sastry[11], R.L. Burden[12], J.H. Mathews[13] as well as numerous other authors. 

J. Oliver [14] investigated the several processes of evaluation of definite integrals using higher- 

order formula. Besides, Gerry Sozio [15] discussed a detailed summary of different techniques of 
numerical integration. Using Bayesian methods, numerical integration is engaged in estimating 

likelihoods and posterior distributions [16]. 
 

Moreover, the value of definite integral∫
𝑏 

𝑦 𝑑𝑥which is enumerated by replacing the function y 

using an interpolation formula and then integrated between a and b. In such a way, we can obtain 

quadrature formula for which numerical values are acquainted as well. In many practical 

circumstances, it is inevitable and more necessary than numerical differentiation. 
 

In our working procedure, we have investigated and also compared with the existing some 
Newton-Cotes methods such as the Trapezoidal rule, Simpson's 1/3 rule as well as Simpson's 3/8 

rule to achieve the best results among them. Moreover, we demonstrated some sub-interval 

randomly for determining the integral numerically and applied numerical examples to compare 
our solutions with the exact value showing some condition graphically to obtain the effective 

method which gives lesser error value among the mentioned methods. 
 

A. PURPOSE AND MOTIVES OF THE STUDY 

The main purpose of this study is to evaluate the method which is the best for solving the definite 

function applying numerical methods. The objectives of the study are given below, 
 

 Estimating the low error value of a solution, convergence as well as accurate results from the 
other remaining methods. 

 

 Comparing the existing methods for computing the appropriate method concerning the given 
problems. 

 

2. RELATED WORK 

In the present era, numerical integration plays an extremely significant role in mathematics 

affiliate, still, it is one of the branches joining the analytical calculations as well as computer 

analysis. On the other hand, a large number of researchers have already been done comprehensive 

research tasks with a view to modeling and promoting the several fields of numerical integration 
for different objectives. 

 

Besides, for instance, Ohta et al. [1] have compared various numerical integration to search out 
the most effective method for the Kramers-Kronig transformation, applying the  analytical 

formula of the Kramers-Kronig transformation of a Lorentzian function as a reference. Also, they 

compared their methods including the application of (1) Maclaurin's formula, (2) trapezium 
formula, (3) Simpson's formula, and (4) successive double Fourier transform methods. In [2], 

Siushansian, R. et al. demonstrated how the convolution integral arising in the electromagnetic 

constitutive relation can be approximated by the trapezoidal rule of numerical integration as well 

as implemented using a newly derived one-time-step recursion relation. Moreover, in their paper, 
they have presented a comparison of different time-domain numerical techniques to model 

material dispersion. However, Pennestrì et al. [3] gave and compared eight widespread 

engineering friction force models, focused the attention on well-known friction models as well as 

delivered a review and comparison based on numerical efficiency. 
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3. MATERIALS AND METHODS 

Because of these tasks, the following methods had compared; Trapezoidal method, Simpson’s 1/3 
method, and Simpson’s 3/8 method. 

 

A. GENERAL QUADRATURE FORMULA 

Let I = ∫
𝑏 

𝑦 𝑑𝑥, where y=f(x).Let f(x) be given for certain equidistant values of x=𝑥 , 𝑥 +2h ,..., 
𝑎 0 0 

𝑥0+kh. Suppose 𝑦0,𝑦1,……,𝑦𝑘 are the entries corresponding to the arguments 𝑥0= a, 𝑥1= a+h, 

𝑥2= a+2h , ...., 𝑥𝑘= a+kh = b respectively. Then we obtain, 

∴ I = ∫
𝑏 

𝑦𝑑𝑥 = ∫
𝑥0+𝑘ℎ 

𝑦 dx 
𝑎 𝑥0 𝑥 

We know, u = 𝑥−𝑥0
 

ℎ 

or x= 𝑥0 + uh ∴ dx = hdu 

Limits: When x=𝑥0, then u=0 

When x= 𝑥0+kh, then u = k 

∴ I = ∫
𝑥0+𝑘ℎ 

𝑦 𝑑𝑥 = ∫
𝑘 

𝑦 

 
 
 
 
 
 

h du 
𝑥0 0 𝑥𝑜+𝑢ℎ 

 

=ℎ ∫
𝑘
[𝑦 + 𝑢∆𝑦 + 

𝑢(𝑢−1) 
∆2𝑦

 
 + 

𝑢(𝑢−1)(𝑢−2) 
∆3𝑦

 
 + ⋯ + 

𝑢(𝑢−1)(𝑢−𝑛+1) 
∆𝑘𝑦 ]𝑑𝑢

 
 

0 0 0 2! 0 3! 0 𝑛! 0 

What is more, in [4], Uilhoorn et al. attempted to search a fast and robust time integration solver 

to obtain gas flow transients within the framework of particle filtering and investigated both stiff 
and nonstiff solvers, namely embedded explicit Runge–Kutta (ERK) schemes. Bhonsale et al. [5] 

basically presented a comparison between three different numerical solution strategies for 

breakage population balance models and their results achieved for the fixed pivot technique, 

moving pivot technique and the cell average technique. Furthermore, these approaches, 
Concepcion Ausin, M. [6] compared various numerical integration producers and examined about 

more advanced numerical integration procedures. In [7], Rajesh Kumar Sinha et al. have worked 

to estimate an integrable polynomial discarding Taylor Series. 

To solve Optimal Control Problem, Docquier, Q. et al. [8] explored the different dynamic 

formulations and compared their performances and their focus had on minimal coordinates and 

the derivation of the dynamics via the recursive methods for tree-like MBS (i.e., the so-called 
Newton-Euler and Order-N recursive algorithms). In their paper, they introduced different 

formulations and discussed their derivations. In [9], Parisi, V. et al. approach the classical, 

Newtonian, gravitational N-body problem utilizing a new, original numerical integration method 

and give the new algorithm, which is used to a set of sample cases of initial conditions in the 
`intermediate' N regime (N=100). Yet Brands, B. et al [10] have tested the comparison of the 

aforementioned hyper-reduction techniques focusing on accuracy and robustness, the well-known 

DEIM is disapproved for their application as it suffers from serious robustness deficiencies. 

Unlike these works, we discussed and investigated the most general one, namely the Newton- 

Cotes methods involving the Trapezoidal, Simpson’s 1/3 and Simpson’s 3/8 rules. Several 

procedures compared and endeavoured to display better methods with a few error values among 

the existing methods, even to estimate the more proper values of definite integrals. 
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= ℎ[𝑘𝑦0 + 

𝑘2 

2 

 
∆𝑦0 + ( 

𝑘3 

3 

𝑘2 

− ) 
2 

∆2𝑦0 

2! 

𝑘4 

+ ( 
4 

 
− 𝑘3 + 𝑘2) 

∆3𝑦0 

3! 

𝑘5 

+ ( 
5 

3𝑘4 
− 

2 

11𝑘3 
+ 

3 

− 3𝑘2) 
∆4𝑦0 

 
 

4! 
+ ⋯ ] 

This is the required Newton-Cotes method i.e, general quadrature formula. When k = 1, 2, 3...... 
then we obtain the Trapezoidal rule, Simpson’s 1/3 rule, Simpson’s 3/8 rule respectively. There 
are some graphical examples of Newton-Cotes where the integrating function can be polynomials 

for any order-for instance, (a) straight lines or (b) parabolas. The integral can be approximated in 

one step or in a series of steps to develop accuracy as, 
 

Figure. 1 Graphical examples of Newton-Cotes. 

 

B. THE GENERAL FORMULA OF TRAPEZOIDAL RULE 

 

In numerical analysis, the trapezoidal rule or method is a idea for approximating the definite 

integral, the average of the left and right sums as well as usually imparts a better approximation 
than either does individuallyThe basic idea of Trapezoidal rule graph is below . 

 

𝑥𝑘 

𝐼 = ∫   𝑓(𝑥)𝑑𝑥 
𝑥0 

 

 

Figure. 2 Trapezoidal rule. 

 

Also, we know from Newton-Cotes general quadrature formula that 
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1 

𝑎 

𝑏 

0 1 0 

 
I   =   ℎ [𝑘𝑦 + 

𝑘2 

∆𝑦 
 

+ (
𝑘3 

− 
𝑘2

) 
∆2𝑦0 + (

𝑘4 

− 𝑘3 + 𝑘2) 
∆3𝑦0 + (

𝑘5 

− 
3𝑘4 

+ 
11𝑘3 

− 3𝑘2) 
∆4𝑦0 + 

         

0 2 0 

⋯ ] 
3 2 2! 4 3! 5 2 3 4! 

 

Now, putting k =1 in the above formula and neglecting the second and higher difference we get, 
 

∫
𝑥0+ℎ 

𝑦  𝑑𝑥= h[𝑦 + ∆𝑦 ] 
 

𝑥0 0 2 0 

= h[ 𝑦 + 
1 

(𝑦 − 𝑦 )] 
2 

=1 ℎ [( 𝑦 + 𝑦 )] 
 

2 0 1 
 

Similarly, ∫
𝑥0+2ℎ 

y dx= 
1 

ℎ (𝑦 
 

+ 𝑦 ) 
𝑥0+ℎ 2 1 2 

 

 

 
∫

𝑥0+𝑘ℎ 

 
 

 
𝑦 𝑑𝑥 

 

 
=1 ℎ (𝑦 + 𝑦 

 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

 
) 

𝑥0+(𝑘−1)ℎ 2 𝑘−1 𝑘 
 

Adding these all integrals, we get, 
 

∫
𝑥0+𝑘ℎ 

𝑦 𝑑𝑥 =
ℎ 

 

[ 𝑦 + +2(𝑦 𝑦 + 𝑦 ........+𝑦 ) +𝑦 ] 
𝑥0 2 0 1   2 3 𝑘−1 𝑘 

 

This rule is acquainted as the trapezoidal rule. 
 

C. THE GENERAL FORMULA OF SIMPSON’S ONE-THIRD RULE 

In numerical integration, the Simpson’s 1/3 rule is a numerical scheme for discovering the 

integral ∫
𝑏 

𝑦 𝑑𝑥within some finite limits a and b. Simpson’s 1/3 rule approximates f(x) with a 

polynomial of degree two p(x), i.e a parabola between the two limits a and b, and then searches 

the integral of that bounded parabola which is applied to exhibit the approximate integral 

∫𝑎 
𝑦 𝑑𝑥. Besides, Simpson’s one-third rule is a tract of trapezoidal rule therein the integrand is 

approximated through a second-order polynomial. The basic idea of Simpson’s one-three graph is 
as follows: 

 

Figure. 3 Simpson’s 1/3 rule. 
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Now, we know from Newton-Cotes general quadrature formula that 
 

I   =   ℎ [𝑘𝑦 + 
𝑘2 

∆𝑦 
 

+ (
𝑘3 

− 
𝑘2

) 
∆2𝑦0 + (

𝑘4 

− 𝑘3 + 𝑘2) 
∆3𝑦0 + (

𝑘5 

− 
3𝑘4 

+ 
11𝑘3 

− 3𝑘2) 
∆4𝑦0 + 

         

0 2 0 

⋯ ] 
3 2 2! 4 3! 5 2 3 4! 

 

Putting k =2 in the formula and neglecting the third and higher difference we get, 
 

 
𝑥0+2ℎ 8 ( −2) 

 

∫ 𝑦 𝑑𝑥 = h [2𝑦0 + 2∆𝑦0+ 3 ∆2𝑦0] 
𝑥0 

=  h [2𝑦 
2 

+ 2(𝑦 − 𝑦 ) +1(𝑦 − 2𝑦 +𝑦 )] 
 

0 1 0 3     2 1 0 

 
=1 h (y + 4y + y ) 

 

3 0 1 2 
 

Similarly,∫
𝑥0+4ℎ 

𝑦 𝑑𝑥 =1 ℎ(𝑦 + 4𝑦 + 𝑦 ) 
 

𝑥0+2ℎ 3 2 3 4 

 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

 

∫
𝑥0+𝑘ℎ 𝑦 𝑑𝑥 =1 ℎ(𝑦 

 

+ 4𝑦 +𝑦 ) 
𝑥0+(𝑘−2}ℎ 3 

When k is even. 

𝑘−2 𝑘−1 𝑘 

Adding these all integrals, we obtain, 

∫
𝑥0+2ℎ 

𝑦 𝑑𝑥 +∫
𝑥0+4ℎ  

𝑦 𝑑𝑥 + ⋯ + ∫
𝑥0+𝑘ℎ 𝑦 𝑑𝑥 

𝑥0 𝑥0+2ℎ 𝑥0+(𝑘−2}ℎ 

=1  ℎ [(𝑦   + 𝑦  )+ 4(𝑦   + 𝑦  + ⋯+𝑦 )  + 2(𝑦 
 

 

+ 𝑦  + ⋯ + 𝑦 )] 
3 0 𝑘 1 3 𝑘−1 2 4 𝑘−2 

 

Or, ∫
𝑥0+𝑘ℎ 

𝑦 𝑑𝑥=
ℎ
[(y0 + yk) + 4(y1 + y3 + ..... + yk-1)+2(y2 + y4 + ... + yk-2)]. 

𝑥0 3 
 

This formula is known as Simpson’s one-third rule. If the number of sub-divisions of the interval 
is even then this method is only applied. 

 

D. THE GENERAL FORMULA OF SIMPSON’S THIRD-EIGHT RULE 

Simpson’s three-eight rule is a process for approximating a definite integral by evaluating the 

integrand at finitely many points and based upon a cubic interpolation rather than a quadratic 
interpolation. The different is Simpson’s 3/8 method applies a third-degree polynomial(cubic) to 

calculate the curve. The basic idea of Simpson’s three eighth’s graph is as follows: 
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+( ) +( ] 

 

 
 

Figure. 4 Simpson's 3/8 rule. 

 

Further, we know from Newton-Cotes general quadrature formula that 
 

I   =   ℎ [𝑘𝑦 + 
𝑘2 

∆𝑦 
 

+ (
𝑘3 

− 
𝑘2

) 
∆2𝑦0 + (

𝑘4 

− 𝑘3 + 𝑘2) 
∆3𝑦0 + (

𝑘5 

− 
3𝑘4 

+ 
11𝑘3 

− 3𝑘2) 
∆4𝑦0 + 

         

0 2 0 

⋯ ] 
3 2 2! 4 3! 5 2 3 4! 

 

Putting k =3 in the formula and neglecting all differences above the third, we get, 
 

∫
𝑥0+3ℎ 

𝑦 𝑑𝑥 =  ℎ [3𝑦 9 27 9  ∆2𝑦0 81 ∆3𝑦0 +   ∆𝑦 − − 27 + 9) 
      

𝑥0 
0 2 0 3 2    2! 4 3! 

= h 
9 9 8 

 
   [3𝑦0 + (𝑦1 − 𝑦0)+ (𝑦2 − 2𝑦1+𝑦0)+ (𝑦3 − 3𝑦2+3𝑦1−𝑦0)] 

2 4 3 
 

∫
𝑥0+3ℎ 

𝑦 𝑑𝑥 =
3 

ℎ(𝑦 + 3𝑦 +3𝑦 + 𝑦 ) 
 

𝑥0 8 0 1 2 3 
 

Similarly, ∫
𝑥0+6ℎ  

𝑦  𝑑𝑥  =
3 

ℎ(𝑦 
 

+ 3𝑦 +3𝑦 + 𝑦 ) 
𝑥0+3ℎ 8 3 4 5 6 

 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

 

∫
𝑥0+𝑘ℎ 𝑦 𝑑𝑥 =3 ℎ(𝑦 

 

+ 3𝑦 +3𝑦 + 𝑦 ) 
𝑥0+(𝑘−3)ℎ 8 𝑘−3 𝑘−2 𝑘−1 𝑘 

 

Adding these all integrals, we get, 
 

∫
𝑥0+3ℎ 

𝑦 𝑑𝑥 +∫
𝑥0+6ℎ 

𝑦 𝑑𝑥 + ⋯ + ∫
𝑥0+𝑘ℎ 𝑦 𝑑𝑥 

𝑥0 𝑥0+3ℎ 𝑥0+(𝑘−3)ℎ 
 

=
3
h [(yo + yk) + 3(y1 + y2 + y4 + y5 + .... + yk-1) + 2(y3 + y6 + ... + yk-3)] 

8 

 

This formula is known as simpson’s three-eights rule. 
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4. RESULTS AND DISCUSSION 

Problem-1: Suppose ∫
𝜋/2 

sin(𝑥) 𝑑𝑥that is determined by using Simpson’s 1/3 rule, Simpson’s3/8 

rule & Trapezoidal rule and interpreting the results by the three methods in this tasks, the results 

of the methods are demonstrated in the following table as well as the comparison of the 

approximate error is also given below. 
 

K Exact 

value 

Simpson’s 

1/3 rule 

Error Simpson’s 

3/8 rule 

Error Trapezoid 

al 
rule 

Error 

1 1.000000 0.5235987 0.47640 0.589048 0.41095 0.785398 0.21460 

2 1.000000 1.0022798 0.00228798 0.919304 0.08070 0.948059 0.05194 

3 1.000000 0.8258986 0.17410 1.0010049 0.0010049 0.977048 0.02295 

4 1.000000 1.0001345 0.0001345 0.900821 0.09918 0.987115 0.01288 

5 1.000000 0.8953350 0.10466 0.961517 0.03848 0.991761 0.00824 

6 1.000000 1.0000263 0.0000263 1.0000596 0.00006 1.251620 0.25162 

7 1.000000 0.9252143 0.07479 0.943693 0.05631 0.995800 0.00420 

8 1.000000 1.0000082 0.0000082 0.975634 0.02437 0.996785 0.0032 

9 1.000000 0.9418275 0.05817 1.0000116 0.0000116 0.997460 0.00254 

10 1.000000 1.0000033 0.0000033 0.960656 0.03934 0.997942 0.00206 

11 1.000000 1.1428019 0.14280 0.982216 0.01778 1.140373 0.14037 

12 1.000000 1.0000016 0.0000016 1.0000016 0.0000016 0.998571 0.00143 

13 1.000000 1.1208316 0.12083 0.969758 0.03024 1.119173 0.11917 

14 1.000000 1.00000088 0.00000088 0.986006 0.01399 0.998950 0.00105 

15 1.000000 1.1047204 0.10472 1.0000015 0.0000015 1.103518 0.10352 

16 1.000000 1.00000051 0.00000051 0.975437 0.02456 0.999196 0.00080 

17 1.000000 1.0924001 0.09240 0.988467 0.01153 1.091491 0.09149 

18 1.000000 1.00000032 0.00000032 1.00000032 0.00000032 1.086465 0.08647 

19 1.000000 0.9724424 0.02756 0.979320 0.02068 0.999430 0.00057 

20 1.000000 1.00000021 0.00000021 0.990193 0.00981 0.999485 0.00051 

21 1.000000 0.9750668 0.02493 1.00000039 0.00000039 0.999533 0.00047 

22 1.000000 1.00000014 0.00000014 0.982142 0.01786 1.070884 0.07088 

23 1.000000 1.0682956 0.06830 0.991469 0.00853 1.067827 0.06783 

24 1.000000 1.00000010 0.00000010 1.00000022 0.00000022 1.065022 0.06502 

25 1.000000 0.9790561 0.02094 0.984287 0.01571 0.999670 0.00033 

26 1.000000 1.000000074 0.000000074 0.992452 0.00755 1.060055 0.06006 

27 1.000000 0.9806075 0.01939 1.00000014 0.00000014 0.999717 0.00028 

28 1.000000 1.000000055 0.000000055 0.985971 0.01403 0.999737 0.00026 

29 1.000000 0.9819449 0.01806 0.993232 0.00677 0.999755 0.00024 

30 1.000000 1.000000041 0.000000041 1.000000094 0.000000094 0.9997715 0.00023 

31 1.000000 0.9831097 0.01689 0.987329 0.01267 0.999786 0.00021 

32 1.000000 1.000000032 0.000000032 0.993866 0.00613 0.999799 0.00020 

33 1.000000 0.9841333 0.01587 1.000000064 0.000000064 0.999811 0.00019 

34 1.000000 1.000000025 0.000000025 0.988448 0.01155 0.999822 0.00018 

35 1.000000 0.9850400 0.01496 0.994391 0.00561 0.999832 0.00017 

36 1.000000 1.000000020 0.000000020 1.000000020 0.000000020 1.043453 0.04345 

37 1.000000 0.9858486 0.01415 0.989384 0.01062 0.999849 0.00015 

38 1.000000 1.000000016 0.000000016 0.994834 0.00517 1.041176 0.04118 

39 1.000000 0.9865744 0.01343 1.000000032 0.000000032 0.999864 0.00014 

40 1.000000 1.000000013 0.000000013 0.990181 0.00982 0.999871 0.00013 

 

Table 1: The results of the three methods. 
 

Here K = 1 to 40 which is the number of subdivision of the interval of the integration. 
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Figure. 5 The approximate error is plotted against the number of subdivisions (1-20). 

 

From the above table and comparison of the approximate error, we can claim that Simpson’s 1/3 

rule gives the lesser error value among other methods when the condition of the subdivision is 

only even, other methods impart less accuracy in this case as compared to other methods. As a 

result, it is recommended strongly that Simpson's 1/3 is the most robust method for solving a 
definite integral and very close to the exact value. 

 

Similarly, 

Problem-2: Let ∫
6 

𝑒𝑥 𝑑𝑥that is calculated by applying Simpson’s 1/3 rule, Simpson’s 3/8rule & 

Trapezoidal rule and interpreting the results by the three methods in this tasks, the results of the 
methods are demonstrated in the following table as well as the comparison of the approximate 

error is also given below. 
 

K Exact 
value 

Simpson’s 
1/3 rule 

Error Simpson’s 
3/8 rule 

Error Trapezoidal 
rule 

Error 

1 402.428 808.85758 406.42958 909.96478 507.536 1213.28638 810.8576 

2 402.428 484.77094 82.34294 522.77107 120.3423 666.89980 264.471 

3 402.428 362.12087 76.30713 442.79280 40.36402 528.40320 125.9744 

4 402.428 411.29757 8.86957 370.21766 32.2111 475.19813 72.76934 

5 402.428 331.66775 70.76025 398.33387 4.09492 449.59961 47.17082 

6 402.428 404.42370 1.9957 406.48342 4.054635 435.41858 32.98979 

7 402.428 334.8533 67.5747 355.88397 46.5448 1007.08899 604.6602 

8 402.428 403.09146 0.66346 399.33387 3.09492 421.11813 18.68934 

9 402.428 342.02113 60.4077 403.32695 0.898158 417.22431 14.79552 

10 402.428 402.70657 0.27857 361.32310 41.1057 755.9862 353.5582 

11 402.428 348.79228 53.6365 388.37344 14.0554 712.22136 309.7926 

12 402.428 402.56447 0.13647 402.72548 0.29669 410.77800 8.34921 

13 402.428 354.53572 47.8931 367.25854 35.1703 409.54726 7.118476 

14 402.428 402.50259 0.07459 389.3363 13.0925 408.56964 6.140854 

15 402.428 359.31136 43.1174 402.55283 0.124044 407.78025 5.351466 

16 402.428 402.47227 0.04427 372.06195 30.3668 407.13373 4.70495 

17 402.428 363.29057 39.1382 390.50270 11.9261 579.11662 176.6878 

18 402.428 402.45603 0.02803 402.48929 0.060501 567.22460 164.7958 

19 402.428 366.63459 35.7942 375.83332 26.5955 405.76753 3.338742 

E
rr
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20 402.428 402.44671 0.01871 391.58997 10.8388 547.64259 145.2138 

21 402.428 369.47354 32.9552 402.46167 0.032882 539.48788 137.0591 

22 402.428 402.44105 0.01305 378.82213 23.6067 532.19502 129.7662 

23 402.428 371.90827 30.5205 392.54317 9.88562 404.70841 2.279624 

24 402.428 402.43746 0.00946 402.44815 0.019362 404.52259 2.093807 

25 402.428 374.01628 28.4125 381.23121 21.1976 404.35859 1.92981 

26 402.428 402.43509 0.00709 393.36556 9.06323 404.21313 1.784347 

27 402.428 375.85740 26.5714 402.44091 0.012125 404.08351 1.654728 

28 402.428 402.43348 0.00548 383.20684 19.222 403.96752 1.538732 

29 402.428 377.47817 24.9506 394.07416 8.35463 403.86330 1.434517 

30 402.428 402.43235 0.00435 402.43676 0.007973 403.76932 1.340539 

31 402.428 378.91522 23.5136 384.852820 17.576 490.10452 87.67573 

32 402.428 402.43154 0.00354 394.68724 7.74155 403.60709 1.178304 

33 402.428 380.19764 22.2312 402.43424 0.005454 484.20041 81.77162 

34 402.428 402.43095 0.00295 386.24348 16.1853 403.47261 1.043827 

35 402.428 381.34879 21.08 395.22094 7.20785 403.41385 0.985061 

36 402.428 402.43051 0.00251 402.43264 0.003856 403.35991 0.931121 

37 402.428 382.38764 20.0412 387.43295 14.9958 403.31028 0.881492 

38 402.428 402.43017 0.00217 395.68863 6.74016 403.26451 0.835727 

39 402.428 383.32968 19.042 402.43159 0.002802 403.22222 0.793436 

40 402.428 402.42992 0.00192 388.46136 13.9674 403.18306 0.75506 
 

Table 2: The results of the three methods. 
 

Here K=1 to 40 which is the number of subdivision of the interval of the integration. 
 

Comparison of the Approximate Error 
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Figure. 6 The approximate error is plotted against the number of subdivisions (1-20). 
 

From the above table and comparison of the approximate error, we can claim that Simpson’s 1/3 
rule gives the lesser error value among other methods when the condition of the subdivision is 

only even, other methods impart less accuracy in this case as compared to other methods. As a 

result, it is recommended strongly that Simpson's 1/3 is the most robust method for solving a 

definite integral and very close to the exact value. 
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sin(x) 

A. VERIFICATION TO ACHIEVE THE BEST METHOD FOR PROBLEM-1 & PROBLEM-2 

GRAPHICALLY 

Firstly, we get the following graphical comparison for problem-1 when subinterval is 4. 

 
 

Given graph of sin(x)  

1 

 

Graph of sin(x) using Trapezoidal rule  

1 

 

 
0.8 0.8 

 

0.6 0.6 

 
 

0.4 0.4 

 

 
0.2 0.2 

 

 
0 

0 10 20 30 40 50 60 70 80 90 

x-axis 

 
0 

0 10 20 30 40 50 60 70 80 90 

x-axis 

 

 

1 

 
 

0.8 

 
 

0.6 

 
 

0.4 

 
 

0.2 

 
 

0 

 

Graph of sin(x) using Simpsons one-third 
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Figure.7 Graphical comparisons. 
 

Comparing the above graph,we see that Simpson’s 1/3 is a better method than others. 

Similarly, 

Secondly, we obtain the following graphical comparison for problem-2 when subinterval is 6. 

 
 
 

400 

 

 
300 

 

 
200 

 

 
100 

 

 
0 

 
Given graph of exp(x)  
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Graph of exp(x) using Trapezoidal rule  
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Figure. 8 Graphical comparisons. 

 

Comparing the above graph,we see that Simpson’s 1/3 is a better method than others. 
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5. CONCLUSION 

From the methods examined in our paper, we are capable of showing numerical integration for 

finding the smallest error value by using the methods of Trapezoidal as well as Simpson’s 1/3, 

Simpson’s 3/8 rules that we have discussed. In our paper tasks, we have tried to display some 
examples as well as emphasized the condition for which Simpson’s one-third method is the best. 

Consequently, we see that Simpson’s one-third rule gives the smallest error value among the rules 

as well as formally it is the most effective and appropriate methods among the mentioned rules in 
the case of even subdivision. s 
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