A STUDY ON L-FUZZY NORMAL SUB & -GROUP

¹K.Sunderrajan, ²A.Senthilkumar and ³R.Muthuraj

¹SRMV College of Arts and Science, Coimbatore-641020, Tamilnadu, India. ²SNS College of Technology, Coimbatore-641035, Tamilnadu, India. ³H.H.The Rajah's College,Pudukkottai-Tamilnadu, India

ABSTRACT

This paper contains some definitions and results of L-fuzzy normal sub ℓ -group and its generalized characteristics.

KEYWORDS

Fuzzy set, L-fuzzy set, L-fuzzy sub ℓ --group, L-fuzzy normal sub ℓ -group.

AMS Subject Classification (2000): 06D72, 06F15, 08A72.

1.INTRODUCTION

L. A. Zadeh[11] introduced the notion of fuzzy subset of a set S as a function from X into I = [0, 1]. Rosenfeld[2] applied this concept in group theory and semi group theory, and developed the theory of fuzzy subgroups and fuzzy subsemigroupoids respectively J.A.Goguen [6] replaced the valuations set [0, 1],by means of a complete lattice in an attempt to make a generalized study of fuzzy set theory by studying L-fuzzy sets.. In fact it seems in order to obtain a complete analogy of crisp mathematics in terms of fuzzy mathematics, it is necessary to replace the valuation set by a system having more rich algebraic structure. These concepts ℓ -groups play a major role in mathematics and fuzzy mathematics. G.S.V Satya Saibaba [9] introduced the concept of L- fuzzy sub ℓ -group and L-fuzzy ℓ -ideal of ℓ -group. In this paper, we initiate the study of L-fuzzy normal sub ℓ -groups.

2.Preliminaries

This section contains some definitions and results to be used in the sequel.

2.1. Definition [5,6,7]

A lattice ordered group (ℓ -group) is a system G= (G, *, \leq) where

 $\begin{array}{ll} & (G,*) \text{ is a group} \\ \text{ii} & (G,\leq) \text{ is a lattice} \\ \text{iii} & \text{the inclusion is invariant under all translations} \\ x \rightarrow a + x + b \text{ i.e. } x \leq y \implies a + x + b \leq a + y + b, \text{ for all} \\ & a, b \in G. \end{array}$

2.2 .Definition [11]

Let X be a non-empty set. A fuzzy subset A of X is a function $A: X \rightarrow [0, 1]$.

2.3. Definition [1,2]

An L-fuzzy subset A of G is called an L-fuzzy subgroup (ALFS) of G if for every $x, y \in G$,

 $\begin{array}{ll} i & A(xy \) \geq A(x) \lor A(y) \\ ii & A(x^{-1}) = A \ (x). \end{array}$

2.4. Definition [9,10]

An L-fuzzy subset A of G is said to be an L-fuzzy sub ℓ - group(LFS ℓ) of G if for any x , $y \in G$

i.	$A(xy) \geq A(x) \lor A(y)$
ii.	$A(x^{-1}) = A(x)$
iii.	$A(x \lor y) \ge A(x) \lor A(y)$
iv.	$A(x \wedge y) \geq A(x) \lor A(y).$

2.5. Definition [4]

Let G and G' be any two groups. Then the function f: $G \rightarrow G'$ is said to be a homomorphism if f (xy) = f(x) f(y) for all x, y in G.

2.6.Definition[3]

Let G and G' be any two groups (not necessarily commutative). Then the function f: $G \rightarrow G'$ is said to be an anti-homomorphism if f (xy) = f (y) f (x) for all x, y in G.

Remark: A homomorphism may or may not be an anti-homomorphism

2.7 .Definition [8,10]

A sub ℓ -group H of an ℓ - group G is called a normal sub ℓ -group of G if for all x in G and h in H we have $xhx^{-1} \in H$.

2.8.Definition[8,10]

An L-fuzzy sub ℓ -group A of G is called an L-fuzzy normal sub ℓ -group (LFNS ℓ G) of G if for every x, y \in G, A(xyx⁻¹) \geq A(y).

3. PROPERTIES OF AN L-FUZZY NORMAL SUB ℓ -GROUP

In this section, we discuss properties of an L-fuzzy normal sub ℓ -group

3.1.Theorem

Let G be an ℓ -group and A be an L-fuzzy sub ℓ -group of G, then the following conditions are equivalent.

i. A is an L-fuzzy normal sub ℓ -group of G. ii. A(xyx⁻¹) = A(y), for all x, y \in G. iii. A(xy) = A(yx), for all x, y \in G. iv.

Proof:

 $i \Rightarrow ii$.

Let A is an L-fuzzy normal sub ℓ -group of G.

Then $A(xyx^{-1}) \ge A(y)$ for all x, $y \in G$. By taking advantage of the arbitrary property of x, we have,

$$A(x^{-1}y(x^{-1})^{-1}) \ge A(y).$$

Now,

$$\begin{array}{ll} A(y) &= A(x^{-1}(xyx^{-1})(x^{-1})^{-1}) \\ &= A(xyx^{-1}) \\ &\geq A(y). \end{array}$$

Hence,

.

$$A(xyx^{-1}) = A(y) \text{ for all } x, y \in G.$$

ii \Rightarrow iii.

Let $A(xyx^{-1}) = A(y)$, for all $x, y \in G$.

Taking yx instead of y, we get,

$$A(xy) = A(yx), \text{ for all } x, y \in G.$$

iii \Rightarrow i.

Let A(xy) = A(yx), for all $x, y \in G$. $A(xyx^{-1}) = A(yxx^{-1}) = A(y) \ge A(y)$.

Hence, A is an L-fuzzy normal sub ℓ -group of G.

3.2 .Theorem

Let A be an L-fuzzy subset of an ℓ -group G. If A(e) = 1 and $A(xy^{-1}) \ge A(x) \land A(y)$, $A(x \lor y) \ge A(x) \land A(y)$, $A(x \land y) \ge A(x) \land A(y)$ and A(xy) = A(yx), for all x and y in G, then A is an L-fuzzy normal sub ℓ -group of a group G, where e is the identity element of G.

Proof:

Let e be identity element of G and x and y in G.

Let A(e) = 1 and $A(xy^{-1}) \ge A(x) \land A(y)$, for all x and y in G.

Now,

$$= A (ex^{-1})$$

$$\geq A (e) \land A (x)$$

$$\geq 1 \land A(x)$$

$$= A(x)$$

Therefore, $A(x^{-1}) \ge A(x)$, for all x in G.

Hence, $A((x^{-1})^{-1}) \ge A(x^{-1})$ and $A(x) \ge A(x^{-1})$.

Therefore, $A(x^{-1}) = A(x)$, for all x in G.

 $A(x^{-1})$

Now, replace y by y^{-1} , then

$$\begin{split} A(xy) &= A(x(y^{-1})^{-1}) \\ &\geq A(x) \wedge A(y^{-1}) \\ &= A(x) \wedge A(y), \text{ for all } x \text{ and } y \text{ in } G. \\ A(xy) &\geq A(x) \wedge A(y), \text{ for all } x \text{ and } y \text{ in } G. \end{split}$$

Also, we have, $A(x \lor y) \ge A(x) \land A(y)$, $A(x \land y) \ge A(x) \land A(y)$.

Hence, A is an L-fuzzy sub ℓ -group of an ℓ -group G.

Since, A(xy) = A(yx) for all x and y in G, A is an L-fuzzy normal sub ℓ -group of an ℓ -group G.

3.3 .Theorem

If A is an L-fuzzy normal sub ℓ -group of an ℓ -group G, then $H = \{x \mid x \in G: A(x) = 1\}$ is either empty or a normal sub ℓ -group of G.

Proof

It is clear from theorem 3.2

3.4 .Theorem

If A is an L-fuzzy normal sub ℓ -group of an ℓ -group G, then $H = \{x \in G : A(x) = A(e)\}$ is either empty or a normal sub ℓ -group of G, where e is the identity element of G.

Proof

Since , H is a sub ℓ -group of G.

Now, let for any x in G and y in H, $A(xyx^{-1}) = A(y) = A(e)$.

Since A is an LFNS ℓ G of an ℓ -group G and $y \in H$.

Hence, $xyx^{-1} \in G$ and H is a normal sub ℓ -group of G.

Hence, H is either empty or a normal sub ℓ -group of an ℓ -group G.

3.5 .Theorem

If A and B are two L-fuzzy normal sub ℓ -groups of an ℓ -group G, then their intersection A \cap B is an L-fuzzy normal sub ℓ -group of G.

Proof

Let x and y belong to G.

i. $(A \cap B) (xy) = A(xy) \wedge B(xy)$ $\geq \{ A(x) \wedge A(y) \} \wedge \{ B(x) \wedge B(y) \}$ $\geq \{ A(x) \wedge B(x) \} \wedge \{ A(y) \wedge B(y) \}$ $= (A \cap B) (x) \wedge (A \cap B) (y).$

Therefore, $(A \cap B)(xy) \ge (A \cap B)(x) \land (A \cap B)(y)$, for all x and y in G.

ii.

$(A \cap B)(x^{-1})$	$= \mathbf{A}(\mathbf{x}^{-1}) \wedge \mathbf{B}(\mathbf{x}^{-1})$
	$= A(x) \wedge B(x)$
	$= (A \cap B)(x).$

Therefore,	$(A \cap B) (x^{-1}) = (A \cap B)(x)$, for all x in G.
iii.	$\begin{aligned} (A \cap B) &(x \lor y) &= A(x \lor y) \land B(x \lor y) \\ &\geq \{ A(x) \land A(y) \} \land \{ B(x) \land B(y) \} \\ &\geq \{ A(x) \land B(x) \} \land \{ A(y) \land B(y) \} \\ &= (A \cap B) (x) \land (A \cap B) (y). \end{aligned}$
Therefore, iv.	$(A \cap B) (x \lor y) \ge (A \cap B)(x) \land (A \cap B)(y), \text{ for all } x \text{ and } y \text{ in } G.$ $(A \cap B) (x \lor y) = A(x \lor y) \land B(x \lor y)$

$$\geq \{ A(x) \land A(y) \} \land \{ B(x) \land B(y) \}$$
$$\geq \{ A(x) \land B(x) \} \land \{ A(y) \land B(y) \}$$
$$= (A \cap B) (x) \land (A \cap B) (y).$$

Therefore, $(A \cap B) (x \lor y) \ge (A \cap B)(x) \land (A \cap B)(y)$, for all x and y in G.

Hence, $A \cap B$ is an L-fuzzy sub ℓ -group of an ℓ -group G.

w,

$$(A \cap B) (xy) = A(xy) \wedge B(xy)$$

$$= A(yx) \wedge B(yx), \text{ since } A \text{ and } B \text{ are LFNS } \ell \text{ G of } G.$$

$$= (A \cap B) (yx).$$

$$(A \cap B) (xy) = (A \cap B) (yx).$$

Hence, $A \cap B$ is an L-fuzzy normal sub ℓ -group of an ℓ -group G.

Remark

The intersection of a family of L-fuzzy normal sub ℓ -groups of an ℓ -group G is an L-fuzzy normal sub ℓ -group of an ℓ -group G.

3.6 .Theorem

If A is an L-fuzzy normal sub ℓ -group of an ℓ -group G if and only if $A(x) = A(y^{-1}xy)$, for all $x, y \in G$.

Proof

Let x and y be in G. Let A be an L-fuzzy normal sub ℓ -group of an ℓ -group G.

Now, $A(y^{-1}xy) = A(y^{-1}yx)$ = A(ex) = A(x).Therefore, $A(x) = A(y^{-1}xy), \text{ for all } x \text{ and } y \text{ in } G.$ Conversely, assume that $A(x) = A(y^{-1}xy).$ Now, $A(xy) = A(y^{-1}xy).$ $A(xy) = A(xyxx^{-1})$ = A(yx)

Therefore, A(xy) = A(yx), for all x and y in G.

Hence, A is an L-fuzzy normal sub ℓ -group of an ℓ -group G.

3.7 .Theorem

Let A be an L-fuzzy sub ℓ -group of an ℓ -group G with A(y) < A(x), for some x and y in G, then A is an L-fuzzy normal sub ℓ -group of an ℓ -group G.

Proof

Let A be an L-fuzzy sub ℓ -group of an ℓ -group G.

Given A(y) < A(x), for some x and y in G,

 $\begin{array}{ll} A(xy) & \geq A(x) \wedge A(y), \text{ as } A \text{ is an } LFS \ensuremath{\,\ell\)} G \text{ of } G \\ & = A(y); \text{ and} \\ A(y) & = A(x^{-1}xy) \\ & \geq A(x^{-1}) \wedge A(xy) \\ & \geq A(x) \wedge A(xy), \text{ as } A \text{ is an } LFS \ensuremath{\,\ell\)} G \text{ of } G \\ & = A(xy). \\ A(y) & \geq A(xy) \geq A(y). \end{array}$

Therefore, A(xy) = A(y), for all x and y in G.

and, $A(yx) \ge A(y) \land A(x)$, as A is an LFS ℓ G of G = A(y); and

$$\begin{array}{ll} A(y) &= A(yxx^{-1}) \\ &\geq A(yx) \wedge A(x^{-1}) \\ &\geq A(yx) \wedge A(x), \mbox{ as A is an LFS } \ell \mbox{ G of G} \\ &= A(yx). \\ A(y) &\geq A(yx) \geq A(y). \end{array}$$

Therefore, A(yx) = A(y), for all x and y in G.

Hence, A(xy) = A(y) = A(yx), for all x and y in G.

Hence, A(xy) = A(yx), for all x and y in G.

Hence, A is an L-fuzzy normal sub ℓ -group of an ℓ -group of G.

3.8 .Theorem

Let A be an L-fuzzy sub ℓ -group of an ℓ -group G with A(y) > A(x) for some x and y in G, then A is an L-fuzzy normal sub ℓ -group of an ℓ -group G.

Proof

It is clear from theorem 3.7

REFERENCES

- [1] Anthony.J.M, Sherwood.H, A characterization of fuzzy subgroups, Fuzzy sets and systems, 7 (1982), 297-305.
- [2] Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications, 35, 512-517 (1971).
- [3] Biswas.R, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy Sets and Systems 35 (1990) 121 124.
- [4] Choudhury.F.P, Chakraborty.A.B and Khare.S.S, A note on fuzzy subgroups and fuzzy homomorphism, Journal of mathematical analysis and applications, 131, 537-553 (1988).
- [5] Garrett Birkhof : Lattice Theory, American Mathematical Society colloquium publications, Volume XXV.
- [6] J.A. Goguen: L-fuzzy sets, J.Math.Anal.Appl. 18, 145-174 (1967).
- [7] V. Murali : Lattice of fuzzy algebras and closure systems in I X, Fuzzy sets and systems 41, 101-111 (1991).
- [8] Mukherjee.N.P and Bhattacharya.P : Fuzzy normal subgroups and fuzzy cosets, inform.Sci 34 (1984), 225-239.
- [9] Satya Saibaba.G.S.V, Fuzzy Lattice Ordered Groups, Southeast Asian Bulletin of Mathematics , 32, 749-766 (2008).
- [10] K.Sunderrajan, A.Senthilkumar, Properties of L-fuzzy normal sub -groups, General Mathematical Notes, Vol. 22, No. 1, May 2014, pp. 93-99.
- [11]L.A. Zadeh: Fuzzy sets, Inform and control, 8, 338-353 (1965).