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Abstract 
 

For one dimensional homogeneous, isotropic aquifer, without accretion the governing Boussinesq 

equation under Dupuit assumptions is a nonlinear partial differential equation. In the  present  paper  

approximate  analytical  solution  of  nonlinear  Boussinesq  equation  is obtained using Homotopy 

perturbation transform method(HPTM). The solution is compared with the exact solution. The 

comparison shows that the HPTM is efficient, accurate and reliable. The analysis of two important aquifer 

parameters namely viz. specific yield and hydraulic conductivity is studied to see the effects on the height 

of water table. The results resemble well with the physical phenomena. 
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1.Introduction  

 
Studies[9]have shown that the total amount of surface and ground water is not enough for all 

the demand of cities and agricultural areas especially those arid or semi-arid areas, due to  the  

development  of  industry,  agriculture  and  the  increase  of  the  population.  The conjunctive 

management of surface and ground water is a subject of great practical, economic and political 

importance in the field of water resources. Numerous developments associated with this subject 

have been obtained during last two decades. An alternative management strategy is to use 

aquifers, the natural underground reservoirs which contain ten or hundred times more water than 

is held in storage in a river or in surface reservoirs. These underground reservoirs are naturally to 

filtering water and regulating water to some degree. Large amounts of water from precipitation 

or irrigation percolate down into water table as an input to aquifer. The earliest study on 

the interaction of river and aquifer was developed by [11]. He derived an analytical solution 

for estimation of the flow from a stream to an aquifer caused by pumping near the stream. 

Serrano (1998) presented a numerical model for transient stream/aquifer interactions in an 

alluvial valley aquifer [8]. The model is based on the one-dimensional Boussinesq equation for 

horizontal unconfined aquifer which was solved using a decomposition method. Parlange et 
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al. (2001) developed a numerical model based on the one-dimensional Boussinesq equation for 

horizontal unconfined aquifer and obtain its solution by solving using finite element program. 

Verhoest et al. (2002) presented a numerical model and compared the results against a transient 

analytical solution. Recently in [5] Hernandez and Uddameri have developed a semi-analytical 

solution for stream-aquifer interactions under triangular stream-stage variations. In the present 

paper it is assumed that the aquifer is in contact with a drainage canal at one end of the 

horizontal aquifer and it is bounded by a zero flux at the impervious surface at the other end of 

aquifer. For one dimensional homogeneous, isotropic aquifer, without accretion the governing 

Boussinesq equation under Dupuit assumptions is a nonlinear partial differential equation. For 

specific initial and boundary conditions the nonlinear Boussinesq equation is solved using 

Homotopy perturbation transform method. The analysis of various parameters is studied to 

observe the corresponding effect on the height of water table. 

 

2. Analysis of Homotopy perturbation transform method 

 
We present a Homotopy perturbation transform algorithm [1,6,10] for solving partial differential 

equation written in an operator form 

 

             ( , ) ( , ) ( , ) ( , )Du x t Ru x t Nu x t g x t            (1) 

with the initial conditions 

              ( ,0) ( ), ( ,0) ( )tu x h x u x f x                    

where D  is the second order linear differential operator

2

2
D

t





, R  is the linear differential     

operator of less order than D , N  represents the general non-linear differential operator 

and ( , )g x t is the source term. The method consist of first applying the Laplace transform to 

equation (1) and then by using initial conditions, we have 

 

           [ ( , )] [ ( , )] [ ( , )] [ ( , )]L Du x t L Ru x t L Nu x t L g x t        (2) 

 

Using Laplace transform of derivatives and applying initial conditions, we have 

 

                                    2[ ( , ) ,0 ,0 ] [ ( , )] [ ( , )] [ ( , )]ts u x s su x u x L Ru x t L Nu x t L g x t       (3) 

On simplifying 

         
2 2 2 2

( ) ( ) 1 1 1
( , ) [ ( , )] [ ( , )] [ ( , )]

h x f x
u x s L Ru x t L g x t L Nu x t

s s s s s
      (4) 

 

Applying inverse Laplace transform in equation (4), we get 

 

           1

2

1
( , ) ( , ) ( , ) ( , )u x t G x t L L Ru x t Nu x t

s

  
   

 
        (5) 
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where  ,G x t  represents the term arising from source term and prescribed initial conditions. 

Now, we apply the homotopy perturbation method according to which u  can be expanded into 

infinite series as 

 

                
0

( , ) ( , )n
n

n

u x t p u x t




  ,           (6) 

where  0,1p  is an embedding parameter. And the nonlinear term can be decomposed as 

 

                
0

( , ) ( )n
n

n

Nu x t p H u




  ,           (7) 

 

where ( )nH u  is the He’s polynomials can be generated by several means. Here we used the 

following recursive formulation: 

 

          0

0 0

1
( ...... ) , 0,1,2,3,.......

!

n
i

n n in
i p

H u u N p u n
n p



 

  
        

     (8) 

 

By substituting equation (6) and (7) in equation (5) the solution can be written as 

 

       1

2
0 0 0

1
( , ) ( , ) ( , ) ( )n n n

n n n

n n n

p u x t G x t p L L R p u x t p H u
s

  


  

   
     
     

     (9) 

 

Equating the terms with identical power of p in equation (9), we obtained the following 

approximations. 

 0
0: ( , ) ,p u x t G x t , 

 1 1
1 0 02

1
: ( , ) ( , ) ( )p u x t L L Ru x t H u

s

  
   

 
, 

                  2 1
2 1 12

1
: ( , ) ( , ) ( )p u x t L L Ru x t H u

s

  
    

 
,       (10) 

                 3 1
3 2 22

1
: ( , ) ( , ) ( )p u x t L L Ru x t H u

s

  
    

 
. 

 

The best approximations for the solutions are 

 

                0 1 2
1

lim ...n
p

u u u u u


              (11) 

 

The present method finds the solution without any discretization or restrictive assumptions and 

therefore reduces the numerical computation to a great extent. 
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3.The nonlinear Boussinesq equation 

 
The idealized cross section of the model under consideration is depicted in figure1 below. 

 
Figure1. Idealized cross section of the model of transient stream-aquifer interaction. 

 

The governing equation for one-dimensional, lateral, unconfined groundwater flow with Dupuit 

assumptions is the Boussinesq equation (Bear, 1972) [2]: 

 

                                                             
y

h K h
h

t S x x

   
  

   
  ,            (12) 

where  ,h x t  is the water table elevation at a distance x from the origin and time t , K , 
yS are 

the saturated hydraulic conductivity and specific yield respectively which are considered to be 

constant. 

 

In order to solve Boussinesq equation (12) completely, the specific initial condition and boundary 

conditions are as considered in [8] are given by: 

 

                0, ( )h t H t ,        0t  ,           (13) 

 

                                                             
 ,

0
xh l t

x





 ,       0t  ,           (14) 

 

The exact solution of equation(12) – (14) is as given in [7] 

 

                                              
2

2/33
( , ) ( 1) 1

1 6( 1) 2( 1)

x x
h x t t

t t t
     
   

       (15) 

we have considered the case where ( )H t increases from zero to a  maximum and then decreases 

back to zero, thus providing a realistic behaviour for all times.  

 

We take 
 

 
2 33

( ) 1 1
2 1

H t t
t

   
 

 shown in figure 2 below. 
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Figure 2.Schematic representation of  H t . 

 

 H t reaches a maximum equal to 
1

3
 at 

3
1

23t


 .  The interest of (13) is that the exact 

solution given by (15) is available for comparison. In the boundary condition(14) zero flux is 

considered at the impervious surface x = lx .  

The initial condition is expressed by  

                   0,0h x H x              (16) 

We assume initial water table in the aquifer as a quadratic approximation and choose 

  2
0H x a x b x c   .Under the above initial and boundary conditions, the solution of 

Boussinesq equation (12) is obtained by using Homotopy perturbation transform method. 

 

4.Approximate analytical solution of Boussinesq equation for horizontal 

aquifer 

 
To solve equation (3.28) by applying Homotopy perturbation transform method the first step is to 

apply Laplace transform on equation (12). 

 

                   

22

2
y

h K h h
L L h

t S xx

       
               

                                     (17)

 

This can be written as 

              
22

2
[ , ,0 ]

y

K h h
sh x s h x L h

S xx

    
             

        (18) 

On applying the initial condition (16), we get 
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                                   
22

2

2
[ , ]

y

K h h
sh x s a x b x c L h

S xx

    
               

       (19) 

Taking Inverse Laplace transform, we get, 

                   
22

1 1 2 1

2

1 1
( , )

y

K h h
L h x s L a x b x c L L h

s S s xx

  
       
                     

    (20)                                                                                                                                         

            
22

2 1

2

1
( , )

y

K h h
h x t a x b x c L L h

S s xx


     
                  

     (21)         

Now we apply the Homotopy perturbation method to handle the non-linearity on the right hand 

side of above equation, in the form 

                                                           
0

( , ) ,n
n

n

h x t p h x t




             (22) 

Using Binomial expansion and He’s Approximation, equation (3.37) reduces to 

    

     

  

0 0
2 1

2
0

0

, ,

1
,

,

n n
n n

n n xxn
n

yn
n

n

n x

p h x t p h x t

K
p h x t a x b x c p L L

S s

p h x t

 

  






      
                
     
                 

 





              (23) 

                                     

    

This can be written in expanded form as 

 

 

2 2 2
2 20 1 2

0 1 2 2 2 2

2 2 1
0 1 2 2

2 2 2
20 1 2

2 2 2

( ..) ...

1
....

...
y

h h h
h ph p h p p

x x xK
h p h p h a x b x c p L L

S s h h h
p p

x x x



     
              

         
     

              

   (24) 

                                 

On comparing the coefficient of various power of p, we get 

 
0 2

0: ( , )p h x t a x b x c    

                              

22
1 1 0 0

1 0 2

1
: ( , )

y

h hK
p h x t L L h

S s xx


                        

                                               

                           

22
2 1 0 01 1

2 0 12 2

1
: ( , ) 2

y

h hK h h
p h x t L L h h

S s x xx x


         
                         

   (25)   
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222 2
3 1 0 02 1 2 1

3 0 1 22 2 2

1
: ( , ) 2

y

h hK h h h h
p h x t L L h h h

S s x x xx x x


                                                      

 

2 22 2
4 1 3 0 0 32 1 1 2

4 0 1 2 32 2 2 2

1
: ( , ) 2 2

y

h h h hK h h h h
p h x t L L h h h h

S s x x x xx x x x


                
                                          

 

Proceeding in similar manner we can obtain further approximations. On solving above equations 

and substituting in equation (3.38) we get HPTM solution of equation (3.28) in the form of a 

series. 

 

              

 

     

  

  

 

2

2 2

2
2 2 2 2

2

3
2 2 2 2 3

3

4
2 2 2 3 4

4

,

2 2

7 8 36 36

67 56 324 324 2
3

52 35 243 243 16
3

y

y

y

y

h x t ax bx c

K
b ax a ax bx c t

S

K
b ac abx a x at

S

K
b ac abx a x a t

S

K
b ac abx a x a t

S

  

    

   

   

   

   (26) 

Considering the initial depth at x = 0 to be zero, we choose c = 0. Applying boundary conditions 

(3.29) and (3.30), we get 1 6a    and 1b  . On substituting the value of a  and b  and 

assuming ratio 1yK S   in equation (26) we get 

 

     
22 2 2 3

2 2

4
2

1
, 1 7 6 67 54 9

6 3 3 6 6 54

2 81 27
52

81 2 4

x x x t t
h x t x t x x x x x

t
x x

   
                      

 
   

 

      (27)                                                                                                                                                                             

On expansion it can be written as 

 
2 3 4 2 2 2 2 2 3 2 4

2 3 47 67 104
,

6 54 81 6 6 6 6 6

t t t x x t x t x t x t
h x t t x xt xt xt xt                    (28) 

On adding and subtracting a term 
2 3 49 9 9 9 9

6 6 6 6 6

t t t t 
      
 

 in equation (28), we get 

 
2 2 2 2 2 3 2 4 2 3 4

2 3 4

2 3 4 2 3 4

9 9 9 9 9
,

6 6 6 6 6 6 6 6 6 6

7 67 104 9 9 9 9 9

6 54 81 6 6 6 6 6

x x t x t x t x t t t t t
h x t x xt xt xt xt

t t t t t t t
t

 
                 
 

 
          
 

  (29) 
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which can be written after rearranging the terms as,      

               
 
   

2

1
3

3 3
,

6 1 2 1

x
h x t

t t

 
 

 
         (30)                                                                                                

Equation (30) is the required solution of (12) obtained by using Homotopy perturbation transform 

method which satisfies boundary conditions (13) and (14). 

 

5.Results and Discussion 

 
The numerical values obtained by HPTM for specific values of time and various space 

coordinates are compared with the exact solution for lx =3(m). From the table 1, it can be seen 

that the solution obtained by HPTM is very close to the exact solution for t = 0.25day. Its 

graphical representation of comparison with exact solution is given in figure 3. The numerical 

values at various values of time(days) and space(m) are shown in table 2. It has been observed 

that the numerical values obtained by HPTM converge with the exact solution. From the table 2, 

it is observed that the height of the water table at x = 0 increases with the time to its maximum 

value 
1

3
upto t = 4.2(days) and then decreases to zero after a very long time (approximately 

4000days ).Also, at x = 3(m), the height of water table decreases from its initial value 1.5(m) to 

0.8658(m) at t = 4.2(days) and becomes zero after a very long time (approximately 4000days). Its 

graphical representation is shown in figure 4 and figure 5. The decrease of the height of the water 

table at x = 0 is not shown in figure 4. Thus, the result satisfies the boundary conditions and 

behaves well with the physical phenomena for various values of time. 

 
 Table 1.Numerical values of height of water table in an unconfined horizontal aquifer obtained by Exact 

solution [4] and Homotopy perturbation transform method. 

 

           Distance (x) (m)                                                                                     ,h x t at (t =0.25days) 

                                                               ___________________________________________________________________ 

                                                                                       EXACT                                                                HPTM 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

2.2 

2.4 

2.6 

2.8 

3 

0.19247665008383383 

0.34714331675050053 

0.4911433167505006 

0.6244766500838338 

0.7471433167505006 

0.8591433167505006 

0.9604766500838338 

1.0511433167505002 

1.1311433167505007 

1.200476650083834 

1.2591433167505004 

1.3071433167505004 

1.3444766500838339 

1.3711433167505005 

1.3871433167505005 

1.3924766500838344 

0.19247665008383374 

0.3471433167505005 

0.49114331675050027 

0.6244766500838337 

0.7471433167505003 

0.8591433167505004 

0.9604766500838338 

1.0511433167505002 

1.1311433167505003 

1.2004766500838338 

1.2591433167505004 

1.3071433167505004 

1.3444766500838337 

1.3711433167505003 

1.3871433167505003 

1.3924766500838337 

 

Table 2.Numerical values of water head in an unconfined horizontal aquifer for different distance x at 

time t = 0,…,4.3 days. 
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height  ,h x t  

________________________________________________________________________________ 
x (m)      t=0        t=0.4        t=0.8       t=1.2          t=1.6        t=1.8         t=2         t=2.8        t=3.2           t=4         t=4.2     t=4.3      

t=4.3 

            (days)    (days)      (days)      (days)       (days)     (days)      (days)      (days)      (days)        (days)     (days)  (days)    

(days) 

0 
0.5 

1 

1.5 
2 

2.5 

3 

0 
0.458 

0.833 

1.125 
1.333 

1.458 

1.5 

0.2694 
0.5968 

0.8646 

1.073 
1.2218 

1.3111 

1.3409 

0.3998 
0.6544 

0.8627 

1.0247 
1.1405 

1.2100 

1.2331 

0.4715 
0.6798 

0.8503 

0.9829 
1.0776 

1.1344 

1.1533 

0.4715 
0.6623 

0.8153 

0.9304 
1.0076 

1.0469 

1.0483 

0.5285 
0.6922 

0.8261 

0.9303 
1.0047 

1.0494 

1.0642 

0.5400 
0.6928 

0.8178 

0.9150 
0.9844 

1.0261 

1.0400 

0.5665 
0.6871 

0.7858 

0.8625 
0.9174 

0.9503 

0.9612 

0.5725 
0.6817 

0.7710 

0.8404 
0.8900 

0.9198 

0.9297 

0.5772 
0.6689 

0.7439 

0.8022 
0.8439 

0.8689 

0.8772 

0.5774 
0.6655 

0.7376 

0.7937 
0.8338 

0.8578 

0.8658 

0.5773 
0.6638 

0.7345 

0.7896 
0.8289 

0.8525 

0.8603 

 

Table 3.Numerical values of water head in an unconfined horizontal aquifer for different time t at 

distance x = 0 , 0.5 , 1,…, 3. 
 

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Distance x

h
e

ig
h

t 
h

(x
 ,
t 
)

 

 

EXACT

HPTM

 

Figure 3.Graph of Exact and HPTM solution for height of water table vs distance x. 

height  ,h x t  

________________________________________________________________________________________________________     

t                           x=0                   x=0.5                     x=1                     x=1.5                      x=2                      x=2.5                 x=3 

0 

0.4 

0.8 

1.2 

1.6 

2 

2.4 

2.8 

3.2 

3.6 

4 

4.2 

0 

0.2694 

0.3998 

0.4715 

0.5139 

0.5400 

0.5564 

0.5665 

0.5725 

0.5758 

0.5772 

0.5773 

0.4583 

0.5968 

0.6544 

0.6798 

0.6902 

0.6928 

0.6912 

0.6871 

0.6817 

0.6755 

0.6689 

0.6655 

0.8333 

0.8647 

0.8627 

0.8503 

0.8344 

0.8178 

0.8015 

0.7858 

0.7710 

0.7570 

0.7439 

0.7376 

1.125 

1.073 

1.0248 

0.9829 

0.9466 

0.9150 

0.8872 

0.8625 

0.8404 

0.8204 

0.8022 

0.7937 

1.3333 

1.2218 

1.1405 

1.0776 

1.0267 

0.9845 

0.9485 

0.9174 

0.8900 

0.8657 

0.8439 

0.8338 

1.4583 

1.3111 

1.2100 

1.1344 

1.0748 

1.0261 

0.9853 

0.9503 

0.9198 

0.8929 

0.8689 

0.8578 

1.5 

1.3409 

1.2331 

1.1533 

1.0908 

1.0400 

0.9975 

0.9612 

0.9297 

0.9019 

0.8772 

0.8658 
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t = 0 days

t = 0.6 days

t = 1.2 days

t = 4.2 days

 

Figure 4.Height of water table in an unconfined horizontal aquifer for different distance x at time 

t = 0,…,4.3 days. 
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x = 0

x = 0.5

x = 1

x = 1.5

x = 2

x = 2.5

x = 3

 

Figure 5.Height of water table in an unconfined horizontal aquifer for different time t at distance x = 0 , 0.5 

, 1,…, 3. 

6.Sensitivity analysis 

 

The effect of various parameters on the height of water table in an unconfined horizontal aquifer 

has been observed and their numerical values and graphical representation are presented below. 

The numerical values of  ,h x t  at fixed time t = 0.4(day) are observed for different distance x by 

increasing the value of specific yield(Sy) keeping hydraulic conductivity(K) same. The numerical 

values are shown in table 4. It can be seen that there is an effect on height of water with the 

increase in Sy. From table 4 it is observed that with the least value of Sy(0.25) the height of the 

water at x =3(m) is decreased from its initial value 1.5m to 1.025 where as with the highest value 

of Sy(0.95), the height of the water table at x=3(m) is decreased from its initial value to 

1.3402(m). A similar observation is made by keeping Sy fixed and increasing the various values 

of K. The numerical values under this effect are shown in table 5. It is observed that with the least 

value of K(1darcy) the height of the water table at x=3(m) is decreased from its initial value 

1.5(m) to 1.0625(m)whereas with the highest value of K(1000darcy ) the height of the water table 

at x=3(m) is decreased from its initial value to 0.3002(m). Thus, both the parameters are sensitive 

with a small change in the values of Sy and higher change in K.  The graphical representation of 
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the effect of Sy and K are shown in figure 6 and figure 7 respectively. It is seen that with the 

increasing value of Sy the height of the water is increases and with K the height of the water table 

decreases which is consistent with respect to the properties of the aquifer parameters. The effect 

of the ratio K/Sy is also observed and the numerical values of the height of water table in five 

different materials are calculated at specific time(t=0.4day). The numerical values at time 

t=0.4(day) are shown in table 6 and its graphical representation is shown is figure 8. From the 

graphical representation it is seen that the height of the water table is maximum between x=0 to 

x=3(m) in sandstone in comparison to other materials. From all the numerical values shown in 

table 4 to table 6 it can be seen that the changes in the height of the water table with the space 

variable is small. This is due to the fact that the groundwater flow is slow and aquifer does 

behave as a reservoir to hold the water a relatively long time.[9] 

 

Table 4.Numerical values of water head in an unconfined horizontal aquifer for different value of 

yS Keeping 1 /K m day  fixed at time t=0.4day. 

 

 

Table 5.Numerical values of water head in an unconfined horizontal aquifer for different value 

of K  Keeping 0.21yS   fixed at time t=0.4 day. 

 

 

 

 

 

 

 

 

 

 

height  ,h x t  at 1 /K m day  (t=0.4 day) 

_______________________________________________________________________________________________________ 

      x                        0.25yS                         0.5yS                        0.75yS                                   0.95yS   

0 

0.5 

1 

1.5 

2 

2.5 

3 

0.2694 

0.4405 

0.5968 

0.7382 

0.8647 

0.9763 

1.073 

0.2694 

0.5071 

0.7150 

0.8931 

1.0415 

1.1601 

1.2489 

0.2694 

0.5567 

0.7993 

0.9971 

1.1501 

1.2584 

1.3219 

0.2694 

0.5893 

0.8527 

1.0594 

1.2096 

1.3032 

1.3402 

height  ,h x t   0.21yS   (t =0.4 day) 

____________________________________________________________________________________________________ 

    x                      1K  m/day                    50K  m/day                    100K  m/day          1000K  m/day 

0 

0.5 

1 

1.5 

2 

2.5 

3 

0.2694 

0.4269 

0.5718 

0.7042 

0.8242 

0.9316 

1.0265 

0.2694 

0.2924 

0.3152 

0.3377 

0.3600 

0.3820 

0.4038 

0.2694 

0.2857 

0.3019 

0.3180 

0.3339 

0.3497 

0.3654 

0.2694 

0.2746 

0.2797 

0.2849 

0.2900 

0.2951 

0.3002 
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Table 6.Numerical values of water head in an unconfined horizontal aquifer for different value 

of ratio 
yK S [3] at time t=0.4 day.  

 ,h x t  (t=0.4 day) 

___________________________________________________________________________________________________ 

x                            1K                                1K                      100K                 100K                      1000K   

                            0.02yS                      0.01yS               0.44yS                 0.16yS                    0.13yS   

                             Sandstone                         Fine Sand             Sand & gravel               Coarse Sand                        Gravel 

0 

0.5 

1 

1.5 

2 

2.5 

3 

0.2694 

0.3193 

0.3681 

0.4156 

0.4619 

0.5071 

0.5510 

0.2694 

0.3048 

0.3397 

0.3739 

0.4075 

0.4405 

0.4730 

0.2694 

0.2930 

0.3163 

0.3393 

0.3621 

0.3846 

0.4068 

0.2694 

0.2837 

0.2978 

0.3118 

0.3258 

0.3397 

0.3534 

0.2694 

0.2735 

0.2775 

0.2816 

0.2856 

0.2897 

0.2937 
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Figure 6.Height of water table in an unconfined horizontal aquifer for different  value of 

yS Keeping 1 /K m day  fixed at time t=0.4 day. 
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Figure 7.Height of water table in an unconfined horizontal aquifer for different  value of K  

Keeping 0.21yS   fixed at time t=0.4 day. 
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Figure 8.Height of water table in an unconfined horizontal aquifer for different values of value 

of ratio 
yK S  at time t=0.4 day. 

 

7.Conclusion 

 
The approximate analytical solution of Boussinesq equation for horizontal aquifer is obtained by 

applying HPTM and compared with the available exact solution for the horizontal aquifer. We 

see that HPTM is easy, accurate and convenient. The combination of Homotopy perturbation 

method and Laplace transform overcomes the restriction of Laplace transform method to solve 

non-linear partial differential equation. The two important parameters viz. Hydraulic conductivity 

and Specific yield( yS ) are considered in the present groundwater flow problem. The approximate 

analytical solution is obtained by considering the ratio 1
y

K

S
 . However, the sensitivity of these 

parameters is studied for five different ratios of five different samples. It is concluded that among 

the five samples considered the height of the water is maximum in sandstone. Various authors 

have obtained the solution of Boussinesq with different boundary conditions. We have shown that 

HPTM can be applied equally well with the suitable choice of initial condition. 
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