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ABSTRACT 

 
The aim of this paper is to study the class of β-normal spaces. The relationships among s-normal spaces, p-

normal spaces and β-normal spaces are investigated. Moreover, we study the forms of generalized β-closed 

functions. We obtain characterizations of β-normal spaces, properties of the forms of generalized β-closed 

functions and preservation theorems. 

 

1. INTRODUCTION 

 

First step in normality was taken by Viglino [32] who de_ned semi normal spaces. Then Singal 

and Arya [28] introduced the class of almost normal spaces and proved that a space is 02010 
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gβclosed function, separation axioms. normal if and only if it is both a semi-normal space and an 

almost normal space. Normality is an important topological property and hence it is of 

signi_cance both from intrinsic interest as well as from applications view point to obtain 

factorizations of normality in terms of weaker topological properties. In recent years, many 

authors have studied several forms of normality [10, 12, 14, 24]. On the other hand, the notions of 

p-normal spaces and s-normal spaces were introduced by Paul and Bhattacharyya [27]; and 

Maheshwari and Prasad [17], respectively. 

 

Levine [16] initiated the investigation of g-closed sets in topological spaces, since then many 

modi_cations of g-closed sets were de_ned and investigated by a large number of topologists [5, 

7, 10, 25]. In 1996, Maki et al [19] introduced the concepts of gp-closed sets and Arya and Nour 

[4] introduced the concepts of gs-closed sets. The purpose of this paper is to study the class of 
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normal spaces, namely β-normal spaces, which is a generalization of the classes of p-normal 

spaces and s-normal spaces. The relations among β-normal spaces, p-normal spaces and s-normal 

spaces and also properties of β-normal spaces are investigated. Moreover, we study the forms of 

generalized _-closed functions. We obtain properties of these forms of generalized β-closed 

functions and preservation theorems. 

Spaces always mean topological spaces on which no separation axioms are assumed unless 

explicitly stated and  (or simply denotes a function f of a 

space  into a space . Let A be a subset of a space X. The closure and the interior of A 

are denoted by cl(A) and int(A) respectively. 

 

De_nition 2.1. A subset A of a space X is called 

 

(1) regular open [29] if A = int(cl(A)); 

(2) β-open [22] if A  int(cl(int(A))); 

(3) semi-open [15] if A  cl(int(A)); 

(4) β-open [1] if A  cl(int(cl(A))); 

(5) preopen [21] or nearly open [11] if A  int(cl(A)). 

 

 

It is shown in [22] that the class of _-open sets is a topology and it is stronger than given topology 

on X. 

 

The complement of an α-open (resp. semi-open, preopen, β-open, regular open) set is called α-

closed [20] (resp. semi-closed [9], preclosed [21], β-closed [1], regular closed [29]). 

 

The intersection of all α-closed (resp. semi-closed, preclosed, β-closed) sets containing A is 

called the α-closure (resp. semi-closure, preclosure, α-closure) of A and is denoted by αcl(A) 

(resp. s-cl(A), p-cl(A), β-cl(A)). 

 

Dually, the α-interior (resp. semi-interior, preinterior, β-interior) of A, denoted by β-int(A) (resp. 

sint(A), pint(A), β-int(A)), is defined to be the union of all α-open (resp. semi-open, preopen, β-

open) sets contained in A. 

 

The family of all β-open (resp. β-closed, α-open, regular open, regular closed, semi-open, 

preopen) sets of a space X is denoted by βO(X) (resp. βC(X), βO(X), RO(X), RC(X), SO(X), 

PO(X)). The family of all β-open sets of X containing a point x is denoted by βO(X, x). 

 

Lemma 2.2. [2] Let A be a subset of a space X and x 2 X. The following properties hold for β-

cl(A): 

 

(1) x € β-cl(A) if and only if A∩U 6= _ for every U € βO(X) containing x; 

(2) A is β-closed if and only if A = β-cl(A); 

(3) β-cl(A)  β-cl(B) if A  B; 
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(4) β-cl(_-cl(A)) = β-cl(A); 

(5) β-cl(A) is β-closed. 

 

De_nition 2.3. A space X is said to be prenormal [26] or p-normal [27] (resp. s-normal [17]) if for 

any pair of disjoint closed sets A and B, there exist disjoint preopen (resp. semi-open) sets U and 

V such that A  U and B  V. 

 

De_nition 2.4. A subset A of a space is said to be g-closed [16] (resp. gs-closed [4], gp-

closed [19]) if cl(A) U (resp. s-cl(A)  U, p-cl(A)  U) whenever A_U and U €  . 

The complement of g-closed (resp. gs-closed, gp-closed) set is said to be g-open (resp. gs-open, 

gp-open). 

  

Definition 2.5.  A subset A of a space  is said to be sg-closed [5] (resp. pg-closed [6]) if s-

cl(A)  U (resp. p-cl(A) U) whenever A  U and U € SO(X) (resp. U € PO(X)).  

 

The complement of sg-closed (resp. pg-closed) set is said to be sg-open (resp. pg- pen). 

 

3. β-NORMAL SPACES 

 

Definition 3.1. [18] A space X is said to be β-normal if for any pair of disjoint closed sets A and 

B, there exist disjoint β-open sets U and V such that A  U and B  V. 

 

Remark 3.2. The following diagram holds for a topological space . 

 

 
 

None of these implications is reversible as shown by the following Examples. 

 

 

 

s-normal. 
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For the other implications the Examples can be seen in [11]. 

 

Theorem 3.4. For a space X the following are equivalent : 

 

(1) X is β-normal, 

(2)  For every pair of open sets U and V whose union is X, there exist _-closed sets A and B 

such that A  U, B  V and A U B= X, 

(3)  For every closed set H and every open set K containing H, there exists a β-open setU 

such that H  U  β-cl(U)  K. 

 

 

 

 

 

 

4. THE RELATED FUNCTIONS WITH β-NORMAL SPACES 

 

Definition 4.1. A function f : X → Y is called 

 

(1) pre β-open if f(U) 2 βO(Y) for each U €βO(X) [18]; 
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(2) pre β-closed if f(U) 2 βC(Y) for each U €βC(X) [18]; 

(3) almost β-irresolute if for each x in X and each β-neighbourhood V of f(x), β-cl(f
-1

(V)) is a β-

neighbourhood of x. 

 

Theorem 4.2. A function f : X → Y is pre β-closed if and only if for each subset A in Y and for 

each _-open set U in X containing f
-1

(A), there exists a β-open set V of Y containing A such that 

f
-1

 (V)  U. 
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Theorem 4.8. If f : X → Y is an β-closed continuous surjection and X is normal, then Y is β-

normal. 

 

Proof. Let A and B be disjoint closed sets of Y . Then f
-1

 (A) and f
-1

 (B) are disjoint closed sets of 

X by the continuity of f. As X is normal, there exist disjoint open sets U and V in X such that f
-

1
(A)  U and f

-1
 (B)  V . By Proposition 6 in [23], there are disjoint _-open sets G and H in 

Y such that A  G and B  H. Since every _-open set is -open, G and H are disjoint β-

open sets containing A and B, respectively. Therefore, Y is β-normal. 

 

5. GENERALIZED Β-CLOSED FUNCTIONS 
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Definition 5.1. [31] A subset A of a space  is said to be gβ-closed if β-cl(A)  U 

whenever A  U and U € . 

 

De_nition 5.2. A subset A of a space  is said to be _g-closed if β-cl(A) _ U whenever A 

 U and U € βO(X). 

 

The complement of βg-closed set is said to be βg-open. 

 

Remark 5.3. The following diagram holds for any subset of a topological space X. 

 

 

 

None of these implications is reversible as shown by the following Examples and the related 

papers. 
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For the other implications the examples can be seen in [4, 5, 6, 9, 19, 21]. 

 

Definition 5.7. A function f : X → Y is said to be 

 

(1) β-closed if f(A) is β-closed in Y for each closed set A of X [1], 

(2) βg-closed if f(A) is βg-closed in Y for each closed set A of X, 

(3) gβ-closed if f(A) is gβ-closed in Y for each closed set A of X. 

 

Definition 5.8. A function f : X → Y is said to be 

 

(1) quasi β-closed if f(A) is closed in Y for each A € βC(X), 

(2) β-βg-closed if f(A) is βg-closed in Y for each A € βC(X), 

(3) β-gβ-closed if f(A) is gβ-closed in Y for each A € βC(X) [31], 

(4) almost gβ-closed if f(A) is gβ-closed in Y for each A € RC(X). 

 

Remark 5.9. The following diagram holds for a function f :  → : 
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Definition 5.12. A function f : X → Y is said to be β-gβ-continuous [30] if f
-1

(K) is gβ-closed in 

X for every K € βC(Y) 
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