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ABSTRACT 

Toeplitz Hermitian Positive Definite (THPD) matrices play an important role in signal processing and 

computer graphics and circular models, related to angular / periodic data, have vide applications in 

various walks of life. Visualizing a circular model through THPD matrix the required computations on 

THPD matrices using single bordering and double bordering are discussed. It can be seen that every 

tridiagonal THPD leads to Cardioid model. 

 
1. INTRODUCTION 

 
Every Toeplitz Hermitian Positive Definite matrix (THPD) can be associated to a Circular model 

through its characteristic function [Mardia (1972)]. The idea of THPD matrix, a special case of 

Toeplitz matrix has a natural extension to infinite case as well. Here, it is attempted to present 

certain algorithms for computations on THPD matrices.  

 

Section 2 is devoted to explain the association between Circular models and THPD matrices 

which is the motivation for taking up computations on THPD matrices for possible   future 

applications / extensions.  On the lines of Rami Reddy (2005), methods for LU decomposition of 

a THPD matrix using single bordering algorithms are discussed and are presented in Sections 3. 

  

2. REPRESENTATION OF A CIRCULAR MODEL THROUGH THPD MATRIX 

 
In continuous case the probability density function (pdf) (g θ )  of   a circular distribution exists 

and has the following basic properties  
 

• (g θ ) θ∀≥    ,0                                                                              (2.1) 

• 1 )(
2

0

=∫ θθ
π

dg                                                                                  (2.2) 

• )2()( πθθ kgg +=  for any integer k  (i.e., g is periodic )              (2.3) 

Rao and Sengupta (2001). 
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Distribution function G on the circle is uniquely determined by characteristic   function [c.f. p. 80 

Mardia (1972)]. The characteristic function and cdf of the resultant wrapped circular model are,  
 

( ) ( ) ( ),     0,  1,ip
W p E e p p

θφ φ= = = ± 2,  3,...± ±      

and 
0

( ) ( ) , [0,2 )G g d

θ

θ θ θ θ π′ ′= ∈∫       

 

Consider the sequence { }∞
∞−pφ  associated with a characteristic function φ  of a circular 

distribution. It is known that if ∑
∞

−∞=p

p

2

  φ is convergent then { } 2
lp ∈φ and  ∑

∞

−∞=p

p

2

  φ is 

convergent iff ∑
∞

=0

2

  
p

pφ is convergent. Thus the sequence { }pφ  of a circular model satisfies (i)  

  ,10 =φ (ii) pp φφ =−  , ∑
∞

∞−
∞<

2

pφ . Since 0lim =pφ , one can assume that pp     1   ∀<φ . 

 

If ppp iβαφ += , then the pdf of the corresponding Circular model is given by  

( )







++= ∑

∞

=1

sincos21
2

1
)(

p

pp ppg θβθα
π

θ          (2.4) 

 

Further if )(θg  is a function of bounded variation then the Fourier series 

∑
∞

−∞=

−=
p

ip

peg
θφ

π
θ

2

1
)(  converges [ Jordan’s test ] provided 

1. )(θg = { })0()0(
2

1
−++ θθ gg  or 

2. )(θg  has only a finite number of maxima and minima and a finite number of  

discontinuities in the interval [ )π2 ,0  and it can be proved that 

∫==
π

θθ θφ
2

0

)).(( )( GdeeE
ipip

p  

Thus the characteristic function of a Circular distribution G is represented by the sequence  { }
pφ . 

Let the matrix   )(  jiaA =  where 0,   , ≥= − jia jiji φ  and      ijji aa = . Since 

 pp φφ =− and  all leading principal minors of A are positive, therefore, A is positive definite.  

 

Thus by invoking the Inversion theorem for characteristic functions it follows that for every 

Circular model there corresponds an infinite matrix through it’s characteristic function. Further, 



Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014 

75 

 

all the leading principal minors are positive, hence the matrix A  is THPD matrix. If 

0== pp βα  for np ≥ , i.e. 

( )







++= ∑

=

n

p
pp ppg

1
sincos21

2

1
)( θβθα

π
θ  , then the corresponding matrix becomes finite 

THPD matrix.  

 

By definition a matrix A  is tridiagonal from Girija (2004) if 2      whenever0 ≥−= jia ji . 

When A  is a tridiagonal THPD, then as shown below A  induces a Cardioid distribution for 

appropriate parameters. In view of the involvement of tridiagonal matrices in Circular 

distributions particularly in Cardioid distribution we may as well look into the properties 

preserved by the tridiagonal matrices in general. We briefly present a few computational methods 

connected with tridiagonal matrices. 

 

2.1Cardioid distribution and tridiagonal matrices 
 

The pdf of a Cardioid distribution with parameters ρµ   and  is given by 

 

( ) [ )πθµθρ
π

θ 2,0  ,  cos(21
2

1
)( ∈−+=g  , 

2

1

2

1
<<− ρ  

The trigonometric moments of g  are 

µρα cos21 =  ,  µρβ sin21 = . 

The corresponding characteristic function of the Cardioid distribution is  

 

ppW ip βαφ +=)( , 1 ,0 ±=p . 

Hence, the THPD matrix induced by the characteristic function of a Cardioid distribution is  

 











=

01

10

φφ

φφ
A  

Clearly for any 2≥n  , the tridiagonal THPD matrix of order n  

 























=

01

01

101

10

.........

...............

0...0

0...

0...0

φφ

φφ

φφφ

φφ

nA  

 

represents a Cardioid distribution. However the minimum order of such matrix is 2. 
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3. LU – DECOMPOSITION OF A TOEPLITZ POSITIVE DEFINITE MATRIX BY 

SINGLE BORDERING 
 

Unless otherwise specified, the matrices mentioned here by default are square matrices of order n. 

By a LU-decomposition of a matrix A  we mean a decomposition of  A  as 

ULLUA   and      where=  are lower triangular matrices respectively. This decomposition is 

possible [Jain and Chawla (1971)] when the leading submatrices of  A are nonsingular. 
 

NOTE : 

 
 

1. A matrix may not have LU – decomposition  as is evident from the following. 
 

Example  1 : 

  

















=









3

21

32

1

0

0

03

20

u

uu

ll

l
 

       2  ,3  ,0 211211 ===⇒ ululul  which is impossible. 

2. Even if LU  decomposition exists, it may not be unique. 

 

      Example 2. 

 

































=














 −−

1-00  

2-10  

4-11-

2-63-

0  42-

0  01  

    

2  33  

0  22  

411

 

































=

10  0

21-0

41-1

26-3  

04-2  

00  1-

   

      

3. It is known that the  LU  decomposition is unique when all the entries on the diagonal of  L or 

U are unity.  

 

Having established the association between a THPD matrices and Circular models, the following 

computational aspects on THPD matrix are explored.  

 

LU- decomposition of a THPD  matrix by single bordering. 

 

Theorem 3.2  
 

Let A  be a THPD matrix of order n and have the form  
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







=

−

−−

0
*

1

11

ax

xA
A

n

nn
 where 1−nA  is a nonsingular matrix of order (n-1) and 

( )121
*

1 ...... aaax nnn −−− = .  

 

Assume that   

 

LU-decomposition of 1−nA  exists and is given by 111 −−− = nnn ULA  , then LUA =  where  

 









=

−

−

nnn

n

ll

OL
L

'1

1
 and 








=

−−

1

11

O

uU
U

nn
  

110
1

1
*

111
1

11 '  ,  ', −−
−

−−−−
−

−− −=== nnnnnnnnnn ulalUxlxLu  

Proof:  Since  1−nA  is THPD  matrix 
1

1
−

−nA  exists, hence 11, −− nn UL  are invertible. 

 










+
=
















=

−−−−

−−−−−−

−

−

nnnnnn

nnnnnn

nnn

n

lulUl

uLUL

O

uU

ll

OL
LU

1111

111111

1

1

''

 

1'
          

= A
ax

xA

n

nn
=








−

−−

0
*

1

11
 

⇔  ,   , 111111 −−−−−− == nnnnnn xuLAUL 11' −− nn Ul = 
*

1−nx  ,  

nnnn lul +−− 11' = 0a  

  )1(
1

110  )1(
1

1
1

110 ''  −−
−

−−−−
−

−
−

−− −=−=⇔ nnnnnnnnn xAxaxLUxal

 

( ) 1
*

11
1
11

*
1 −−−

−
−−− =⇔=⇔ nnnn

T
nn lUxUlx  

( )

( ) 1
*

1
1

11

1
*

1
1

11

 −−
−

−−

−−
−

−−

=

=

nnnn

nnnn

lULu

lULu

 

 

For the purpose of computations, the above theorem is arranged in the form of a 

Recursive algorithm. 
 
Given A = (ai,j) 

Let ii aa =−    
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Step 1 : A1 = (a0),  L1 = (a0),  U1 = (1) 

Step 2 : For i = 2 (1) n we have 

and ( )121

*

1 ... , , aaax iii −−− =  

Compute 
1

1

1

1   ,
−

−

−

− ii UL    

Write  ,
1

1

*

11

−

−−− = ii

T

i Uxl   1

1

11 −

−

−− = iii xLu  

Compute 11 −− i

T

i ul  

Write  110 −−−= i

T

iii ulal  

Write   ,
0

1

1









=

−

−

ii

T

i

i

i
ll

L
L   








=

−−

10

11 ii

i

uU
U  

Write L = Ln, U = Un 

 

Example   

 

We find the LU decomposition for the following THPD matrix A  is associated with the 
characteristic function of a Wrapped Weibull distribution. 

 



















−−−−

+−−

++−

+−++

=

0000.16347.05432.05312.00276.02970.01012.0

6347.05432.00000.16347.05432.05312.00276.0

5312.00276.06347.05432.00000.16347.05432.0

2970.01012.05312.00276.06347.05432.00000.1

iii

iii

iii

iii

A  

Step1 : 

 

A1  = (1),   L1  = (1), U1 = (1) 

 

Step 2: 
 

x1        =  [0.5432 - 0.6347i] 

1
1
−L   =  (1),  

1
1
−U  =  (1) 

l1      =   0.5432 - 0.6347i 

u1     =   0.5432 + 0.6347i 

l22    =    0.3021 

L2 =  








          0.3021   0.6347i - 0.5432

          0                  1.0000
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U2 =  






 +

          1.0000                 0        

0.6347i  0.5432             1.0000
 

    

L2 U2 = 






 +

          1.0000   0.6347i - 0.5432

0.6347i  0.5432                  1.0000
 

   Step 3:  
 

x2    =   [0.0276 - 0.5312i   0.5432 - 0.6347i] 

 

=−1
2L    









+  3.3103   2.1010i  1.7981-  

       0        0.0000i - 1.0000   
 

 

   1
2 =−U 









          1.0000                  0        

0.6347i - 0.5432-            1.0000   
 

 

2l  =     (  0.0276 - 0.5312i   0.1911 - 0.3637i) 

 

2u  = 








+

+

1.2038i  0.6324  

0.5312i  0.0276  
 

 33l  = (   0.1584 - 0.0000i ) 

 3L =  

















0.0000i - 0.1584   0.3637i - 0.1911   0.5312i - 0.0276   

          0                  0.3021   0.6347i - 0.5432   

          0                           0                  1.0000   

 

 

3U  =  

















+

++

          1.0000                        0                  0        

1.2038i  0.6324                    1.0000             0        

0.5312i  0.0276   0.6347i  0.5432         1.0000   

 

 

33
UL  = 

















+

++

          1.0000   0.6347i - 0.5432   0.5312i - 0.0276   

0.6347i  0.5432                   1.0000   0.6347i - 0.5432   

0.5312i  0.0276   0.6347i  0.5432                  1.0000   
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Step 4: 

 
x3  =  [-0.1012 - 0.2970i   0.0276 - 0.5312i   0.5432 - 0.6347i] 

 

=−1
3L  

















++

+

0.0000i  6.3119   7.5986i  3.9920-  3.3084i - 2.8286-  

          0                  3.3103   2.1010i  1.7981-  

          0                       0        0.0000i - 1.0000   

 

 

=−1
3U  















 +

          1.0000                                0                  0        

1.2038i - 0.6324-                    1.0000                 0        

0.5241i  0.4481-       0.6347i - 0.5432-            1.0000

 

 

3l  =  [ -0.1012 - 0.2970i  -0.1059 - 0.3056i   0.0873 - 0.2519i ] 

 

3u  =  

















+

+

+

1.5901i  0.5509   

1.0117i  0.3507-  

0.2970i  0.1012-  

 

 

44l  = ( 0.1065 - 0.0000i ) 

 

4L  = 



















0.0000i - 0.1065      0.2519i - 0.0873    0.3056i - 0.1059-  0.2970i - 0.1012-  

0       0.0000i - 0.1584     0.3637i - 0.1911   0.5312i - 0.0276   

0                                0                    0.3021   0.6347i - 0.5432   

0                                0                             0                  1.0000   

 

 

4U =  



















+

++

+++

1.0000                                 0                        0                  0        

     1.5901i  0.5509                        1.0000                        0                  0        

1.0117i  0.3507-       1.2038i  0.6324                    1.0000             0        

0.2970i  0.1012-       0.5312i  0.0276        0.6347i  0.5432         1.0000
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4L 4U  =  



















+

++

+++

 1.0000    0.6347i - 0.5432   0.5312i - 0.0276   0.2970i - 0.1012-  

0.6347i  0.5432                    1.0000   0.6347i - 0.5432   0.5312i - 0.0276   

0.5312i  0.0276   0.6347i  0.5432                   1.0000   0.6347i - 0.5432   

0.2970i  0.1012-  0.5312i  0.0276   0.6347i  0.5432                  1.0000   
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