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ABSTRACT 

 

In this paper, the optimal prediction of the expected value of assets under the fractal scaling exponent is 

considered. We first obtain a fractal exponent, then derive a seemingly Black-Scholes parabolic equation. 

We further obtain its solutions under given conditions for the prediction of expected value of assets given 

the fractal exponent.               
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1. INTRODUCTION 

 
Financial economist always strive for better understanding of the market dynamics of financial 

prices and seek improvement in modeling them. Many studies have found that the multi-fractal is 

more reasonable to describe the financial system than the monofractal.  

 

The concept of “fractal world” was proposed by Mandelbrot in 1980’s and was based on scale-

invariant statistics with power law correlation (Mandelbrot, 1982). In subsequent years, this new 

theory was developed and finally it brought a more general concept of multi-scaling. It allows one 

to study the global and local behavior of a singular measure or in other words, the mono-and 

multi-fractal properties of a system. In economy, multi-fractal is one of the well-known stylized 

facts which characterized non-trivial properties of financial time series (Eisler,2004). 

 

The multi-fractal model fundamentally differs from previous volatility models in its scaling 

properties. The emphasis on scaling originates in the work of Mandelbrot (1963), for extreme 

variations and Mandelbrot (1965),and Mandelbrot and Van ness (1968) for long memory. Multi-

fractality is a form of generalized scaling that includes both extreme variations and long memory. 

 

Several studies have examined the cyclic long-term dependence property of financial prices, 

including stock prices (Aydogan and Booth, (1988);Greene and Fielitz, (1977)). These studies 

used the classical rescaled range (R/S) analysis, first proposed by Hurst (1951) and later refined 
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by Mandelbrot and Wallis and Matalas (1970), among others. A problem with the classical R/S 

analysis is that the distribution of its regression-based test statistics is not well defined. As a 

result, Lo (1991) proposed the use of a modified R/S procedure with improved robustness. The 

modified R/S procedure has been applied to study dynamic behavior of stock prices (Lo, 1991; 

Cheung, Lai, and Lai, 1994). 

 

The problem associated with random behavior of stock exchange has been addressed extensively 

by many authors (see for example, Black and Scholes, 1973 and Black and Karasinski, 

1991).Hull and White (1987) among others followed the traditional approach to pricing options 

on stocks with stochastic volatility which starts by specifying the joint process for the stock price 

and its volatility risk. Their models are typically calibrated to the prices of a few options or 

estimated from the time series of stock prices.  Ugbebor et al (2001) considered a stochastic 

model of price changes at the floor of stock market. On the other hand, Osu and Adindu-Dick 

(2014) examined multi-fractal spectrum model for the measurement of random behavior of asset 

price returns. They investigated the rate of returns prior to market signals corresponding to the 

value for packing dimension in fractal dispersion of Hausdorff measure. They went a step further 

to give some conditions which determine the equilibrium price, the future market price and the 

optimal trading strategy. 

 

In this paper we present the optimal prediction of the expected value of assets under the fractal 

scaling exponent. We first obtain a fractal exponent, then derive a seemingly Black-Scholes 

parabolic equation. We further obtain its solutions undergiven conditions for the prediction of 

expected value of assets given the fractal exponent. 

 

2. THE MODEL 

 
Consider the average fractal dimension which is the optimal extraction part to be  

 ���� = �∆� 	 ��
��
��
����� .                                                                                                   (2.1) 

 

Here, 
 is the singularity strength or the holder exponent, while ��
� is the dimension of the 

subset of series characterized by 
 and ���� is the average fractal dimension of all subsets. 

 ∆��
� = ��
���� − ��
���� 

 ∆
 = �
��� − 
����. 
 

If the process follows the Hausdorff multi-fractal process we have 

 ���� = �∆� 	 ��
� �
��
�����   = ������ �� ��,"��"#�/%&'"/� = (��� = 	 ∅*+,- �.�/�.            (2.2) 

 

Let  (0�, 1�0��� be a measurable space and �: 1�0�� → 0 be a measurable functionL 

 

et 4 be a real valued function on 1�0�� , then the multi-fractal spectrum with respect to the 

functions �56� λis given by 
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7�5� = 48�91�0�: ���� = 5:                                                                       (2.3) 

 

whereλ is taken to be the Hausdorff dimension. Xiao (2004), defined 

 ���� = ������ �� ��,"��"#�/%&'"/� = ;�∅�<�                                                                   (2.4)                                                            

 

from which Uzoma (2006), derive another gauge function to be 

 ����= = ������ �> ��,"�?"#�/%&'"/�@ = A∅�<�.                                                                (2.5) 

 

Let7�5�be multi-fractal thick points of .  and BC be Brownian motion in 0� if 6 > 3 then for all 0 ≤ 5 ≤ H,�I, Xiao (2004) showed that 

 ��� J�90�: lim"→N ��� = �� ��,"��"#�/%&'"/� = 5O= 2 − �,�IQ                    (2.6) 

 

 with/� > 0 a Bessel function given as
R�QSQ���,  .>T��, *�? is the sojourn time,5 the singularity 

strength and*radius of the ball. We assume that  

 ���� − ����= ⇒ A∅�<� − ;�∅�<�,                                (2.7) 

 

where λ = distortion parameter defined on 1�0��, ���V*�W�VX� 5� . dynamics and is governed by 

the useful techniques for Hausdorff dimension. For (2.7) is not equal to zero, we obtain in the 

sequel its value of which we shall call the fractal exponent 
. 
 

2.1.1 ESTIMATION OFY 
 
Given a real function  ZC ,  which is continuous and monotonic decreasing for V > 0  with limC→N ZC = +∞ 
 

Frostman (1935), defined capacity with respect to ZC ∶ suppose E is bounded borel set in <]56� ZC then . is a measureable distribution function defined for Borel subsets of E such that  

 .�<� = 1 
 

(��� = _ ∅*+,- �.�/� ⇒ ���� = 1∆
 _ ��
� �
��
�
����

 

 

Where *+,   denotes the distance between p and q, exists for � 9 <] and is finite or +∞ . U(p) is ∅- potential with respect to the distribution ..  Define ∅ − `5�5`�Va  of E denotedA∅�<� by 

(i) if    ;∅�<� = ∞ VℎX6 A∅�<� = 0 

(ii) if    ;∅�<� < ∞ VℎX6 A∅�<� − ;∅�<� ≠ 0. 

 

 Given 0C as the closure of �, it is clear that if x is not in 0C then 
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  7���� = lim"→N ��� �� ��,"��e�Q"� = 0    (2.8) 

 

Thus if  

 < = J�90�: lim"→N ��� �> ��,"�?e�Q"� = 0O       (2.9) 

 

 Then  < ∩ 0C = ∅ 

 

Applying (2.3 ) and (2.8) we see that 

 

 7�0� = 48�9 0�: ���� = 0:              (2.10) 

 

 

gives the Hausdorff dimension  of   <, < ∩ 0C = ∅. 

 

From the gauge function A∅�<� = 7� (x)  

 ℎ�*� = *Q��gh �"�=, 4 > 1                (2.11) 

 

is the correct gauge function such that   ����  =  0. 
 

Note that the occupation measure associated with Brownian motion in 6 ≥ 3  has a simple 

meaning for it becomes 

                          lim"→N ��� j�"�e�Q"�,      (2.12) 

 

Where 

 k�*� = 	 l ��,"��N B����V       (2.13) 

 

 

is the total time spent in T��, *� up to time 1. 

 

 

THEOREM 1 

 

Let  ;∅�<�be as in (2.4) and define A∅�<� capacity of < to be A∅�<� as in (2.5). If ;∅�<� = ∞ 

then A∅�<� = 0 and given ;∅�<� < ∞, then the dimension capacity ∅ (equivalent to our fractal 

exponent) is given by A∅�<� − ;∅�<� ≠ 0 ⟹ �,�IQ  . 
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Proof 

 

We shall proof this in two parts; the value of A∅�<�and ;∅�<�. 

 

For A∅�<�, Let there be a Brownian motion in 0�, 6 ≥ 2 , then there exist a positive constant c 

such that for ℤ ≥ ℤN > 0, �8k�*� ≥ ℤ*Q: ≤ exp �−`r�  (Taylor, 1967) .Let BC be a Brownian 

motion in 0�, 6 ≥ 3. 

 

Suppose ℎ�*� = *Q��gh �"�=, 4 > 1. 

 

 Then following  Uzoma (2006), we have 

 Lim"→N ��� j�"�e�Q"� = 0.            (2.14) 

 

For a fixed 9 > 0 56� 5] → 0 5� t → ∞define<= = Jk�5]� ≥ 9  5]Q��gh ��u�=O  by 

 v�<=� ≤ X�� J−`��gh ��u�=O ≤ X�� J−`��gh ��u�=wO = ��gh ��u�S=wx,   (2.15) 

 

hence ∑ v�<=� < ∞, �� 4 > �xw > 1. 

 

Thus by Borel Cantelli lemma, we have v�<= , �. 0� = 0 therefore there exist 5N such that   

 Jk�5]� < 9  5]Q��gh ��u�=, �. 0O  for some 5] ≤ 5N so that 

 lim�u→z ��� k�5]�5]Q��gh ��u�= ≤ 9 �g* 4 > 1 

 

Allowing 9 → 0, �ℎg{� Vℎ5V 

 

v | lim�u→z ��� k�5]�5]Q��gh ��u�= = 0} > 0, 4 > 1 

 

 

 

By the Blumenthal zero- one law, we have 

 

v ~lim�u→z ��� j��u��uI�%&' �
u�@ = 0� = 1, 4 > 1  (2.16) 

 

 

Hence, by monotonicity of T and h, we have  
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lim"→N ��� k�*�ℎ�*� ≤ �l + 9� lim]→∞ ��� k�5]��5]Q�gh ��u�= ′ 4 > 1 

 

and the result is established 

 

Thus if  

 

λ> 1 and < = J�90�: lim�→N sup µ����,����I/����/λ = 0O 

 

then from (2.6) 

 

 dim < = J�90�: lim�→N sup µ����,����I/����/λ = 0O = 2  when  6 > 3  a.s                             (2.17) 

 

For the second part, it has been shown that;∅�<� = 2 − �,�IQ  (Xiao, 2004). If ;∅�<� = ∞ then A∅�<� = 0 and given ;∅�<� < ∞, then the dimension capacity ∅ is given by A∅�<� − ;∅�<� . 

 

Put;�∅�<� = �> ��,"�?"#�|%&'"|� = l6��;�∅�<� where .is a measure with respect to ∅-capacity of < on the 

function ;∅�<�and A�∅�<� = �> ��,"�?"#���� "�@ = ����A�∅�<�, then 

 A�∅�<� − ;�∅�<� = ����A�∅�<� − l6��;�∅�<� 

     

                         = 2 − �2 − �,�IQ � = �,�IQ  ,     (2.18) 

 

as required. 

 

3. Optimal expected value of assets under fractal scaling exponent 

 
Consider a portfolio comprising h unit of assets in long position and one unit of the option in 

short position. At time T the value of the portfolio is 

 

                                  ℎ� − ;,             (3.1) 

 

measured by the fractal index A∅�<� − ;∅�<� ≠ 0. 

 

After an elapse of time ∆V the value of the portfolio will change by the rate ℎ�∆� + 7∆V� − ∆;in 

view of the dividend received on h units held. By Ito’s lemma this equals 

 

ℎ�.�∆V + ��∆r + 7∆V� − ����V + ���� .� + 12 �Q;��Q �Q�Q� ∆V + ���� ��∆r� 
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or 

 

�ℎ.� + ℎ7�   − ����V + ���� .� + 12 �Q;��Q �Q�Q� ∆V + �ℎ�� − ���� ���∆r 

 

 If we take          

 

    ℎ = ����            (3.2) 

 

the uncertainty term disappears, thus the portfolio in this case is temporarily riskless. It should 

therefore grow in value by the riskless rate in force i.e. 

 

�ℎ.� + ℎ7�  − ����V + ���� .� + 12 �Q;��Q �Q�Q� ∆V = �ℎ� − ;�*∆V 

 

Thus  

 

7 �;��   − ����V + 12 �Q;��Q �Q�Q� = ����� � − ;�* 

 

So that 

 

 
 ���C + �*� − 7� ���� + �Q �I���I �Q� = *; .                (3.3) 

 

 

Proposition 1: Let 7 = 0 (where D is the market price of risk), then the solution of (3.3) which 

coincides with the solution of  

 ���C + �Q �I���I �Q�Q = 0         (3.4a) 

 

is given by  

 V�S, t� = VNexp JSQα����I
σI + λS�O X"C.         (3.4b) 

 

For proof see (Osu and Adindu –Dick, 2014). 

 

 

 

 

Proposition 2:For 7 ≠ 0, the solution of (3.3) is given as:  

 

   ;��� = ��,�IQ� ��  ¡X=�
¢�II£ + TX=I
¢�II£ ¤,            (3.5a) 
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Where 

 

4� = − Q¥ ± § H¥I + ¨"¥I©Iand 4Q = ± �¥ §4 + ¨"©I    (3.5b). 

 

 

Proof  

 

We take  

 « = �� ; ;��� = «�­�«�.      (3.6) 

 

Thus 

 �r�� = − 
�Q = − 1
 «Q 

 ���� = �;�« . �«�� 

 = − 1
 «Q�1«�S�­ + «� �­�« � 

 

    = − �� �1«�®�­ + «�®Q ¯°̄± �. 

 

Hence 

 ¯I� ¯�I = ¯̄� �¯�¯±).
¯±¯� = − �� «Q�1�1 + 1�«�­ + 1«�®� ¯°̄± + �1 + 2�«�®� ¯°̄± + «�®Q ¯I°¯±I �. 

 

In this case V is not dependent on  *. Substituting into the given differential equation we have  

 

                          *«�­ = �Q2 �1�1 + 1�«�­ + 1«�®� �­�« + �1 + 2�«�®� �­�« + «�®Q �Q­�«Q � 

                          +�"�± − 7� �S�� � �1«�®�­ + «�®Q ¯°̄± � 

 

Cancelling by«� and collecting like terms we have  

 

0 = �Q2 «Q �Q­�«Q +  �­�« ²�Q�1 + 1�« − *« + 7
 «Q³ + ­ ��Q2 1�1 + 1� − *1 + 1 7
 «� − *{ 

= �Q2 «Q �Q­�«Q +  �­�«  « ²�Q�1 + 1� − * + 7
 «³ + ­ ��Q2 1�1 + 1� − *�1 + 1� + 1 7
 «� 

 

Let 

 1 = 0.* = �́ «                    (3.7) 
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We obtain 

 «Q ¯I°¯¥I + 2« ¯°̄¥ − Q°"©I = 0.                                                    (3.8) 

 

Let 4� and 4Q be the roots of the equation, then 

 4� + 4Q = − 2r  4�4Q = − 2*«Q�Q  
Now, �Q­�rQ − �4� + 4Q� �­�� − 4�4Q­ = 0  
or ��r ²�­�« − 4Q­³ = 4� ²�­�� − 4Q­³ 

 

Then  

 �­�« = µ, µ = ²�­�� − 4Q­³ 

 

Which gives  µ = AX=I¥with solution 

 XS=�¥­ = 	 A X�=�S=I�¥�r + T             (3.9) 

 

(Where C and B are arbitrary constants). Hence 

 

   ­�r� = ¡X=�¥ + TX=I¥               (3.10) 

 ;��� = «�­�«�  
         = �
��� J ¡X=�#£ + TX=I#£ O  

        = ��,�IQ� ��   ¡X=�
¢�II£ + TX=I
¢�II£ ¤                                      (3.11) 

 

 

4. Conclusion 
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The Models: (3.4b) and (3.5a) suggest the optimal prediction of the expected value of assets 

under fractal scaling exponent�A − ;� = �,�IQ  which we obtained. We derived a seemingly Black 

Scholes parabolic equation and its solution under given conditions for the prediction of assets 

values given the fractal exponent. Considering (3.4b), we observed that when 5 = 0 , 
 = 0,the 

equation reduces to ;��, V� = ;NX`"C.This means that the expected value is being determined by 

the interest rate * and time V. If 5 = 4, 
 = 2/�Q,(3.4b) reduces to 

 ;��, V� = ;NX�� JSH,�IC��I
©I ± √2/�O X"C thisalso means that the growth rate depends on price, 

time, and interest rate.  

 

Considering (3.5a), we also observed that when 5 = 0, the equation becomes ;��� = 0, this 

signifies no signal. If 5 = 4, (3.5a) becomes ;��� = �Q,�I� ��  ¡X=�I¢�I£ + TX=II¢�I£ ¤ ,this implies 

that there is signal. We now further look at it when / = 1 to have ;��� = �Q��� ¸¡XI@�£ + TXI@I£ ¹. 

 

Hence, if 4� 56� 4Qare negative, the equation decays exponentially. On the otherhand if 4�56� 4Qare positive , the equation grows exponentially.  
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