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1. INTRODUCTION

The notion of fuzzy sets was introduced by L.A. Zadeh [15]. Fuzzy set theory has been developed
in many directions by many researchers and has evoked great interest among mathematicians
working in different fields of mathematics. In 1971, Rosenfeld [12] introduced the concept of
fuzzy subgroup. R. Biswas [1] introduced the concept of anti fuzzy subgroup of group. Li
Hongxing [2] introduced the concept of HX group and the authors Chengzhong et al.[4]
introduced the concept of fuzzy HX group. Palaniappan.N. et al.[12] discussed the concepts of
anti-fuzzy group and its Lower level subgroups. Muthuraj.R..et al.[7],[9] discussed the concepts
of bipolar fuzzy subgroups and bipolar anti fuzzy subgroups and also discussed bipolar fuzzy HX
subgroup and its level sub HX groups, bipolar anti-fuzzy HX subgroups and its lower level sub
HX groups. Bhattacharya [10] introduced fuzzy right coset and fuzzy left coset of a group. B.
Vasantha kandasamy [14] introduced the concept of pseudo fuzzy cosets, and pseudo fuzzy
double cosets of a fuzzy group of a group. In this paper we define the concept of pseudo bipolar
fuzzy cosets, pseudo bipolar fuzzy double cosets of bipolar fuzzy and bipolar anti-fuzzy
subgroups of a group. Also introduce the concept of pseudo bipolar fuzzy cosets and pseudo
bipolar fuzzy double cosets of bipolar fuzzy and bipolar anti-fuzzy HX subgroups of a HX group
and study some of their related properties.

2. PRELIMINARIES

In this section, we site the fundamental definitions that will be used in the sequel. Throughout this
paper, G = (G, *) is a group, e is the identity element of G, and Xy, we mean X *y.
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2.1 Definition [15]
Let X be any non empty set. A fuzzy subset p of X is a function u: X — [0, 1].
2.2 Definition [1]

A fuzzy set pu on G is called fuzzy subgroup of G if for x, y € G,
LuCxy) 2 min {pGo, p(y)}
iip(xc) = peo).

2.3 Definition [1]

A fuzzy set pon Gis called an anti- fuzzy subgroup of G if for x,yeG,

ip(xy)<max {u (x), u(y)}
ipx") = p).

2.4 Definition [9]

Let G be a non-empty set. A bipolar-valued fuzzy set or bipolar fuzzy set i in G is an object
having the form p={(x, uW'(x), L (x)) : x6 G} where P : G — [0,1] and u : G — [-1,0] are
mappings. The positive membership degree L* (x) denotes the satisfaction degree of an element x
to the property corresponding to a bipolar-valued fuzzy set i ={(x, W' (x), W (x)): x€ G} and the
negative membership degree | (x) denotes the satisfaction degree of an element x to some
implicit counter property corresponding to a bipolar-valued fuzzy set W = {{x, W'(x), W' (x) ) :
xeG}. If W'(x) #0 and W (x) = 0, it is the situation that x is regarded as having only positive
satisfaction for L = {{x, W'(x), W (X)) : xe G}. If u'(x) = 0 and p (x) # 0, it is the situation that x
does not satisfy the property of @ ={{x, L (x), W (x)): xe G}, but somewhat satisfies the counter
property of W= {(x, W (x), W (x)) : x€ G}. It is possible for an element x to be such that pu*(x) # 0
and W (x) # 0 when the membership function of property overlaps that its counter property over
some portion of G. For the sake of simplicity, we shall use the symbol = (u",)") for the bipolar-
valued fuzzy set i = {(x, L'(x), W (x)): xe G}.

2.5 Definition [9]

A bipolar-valued fuzzy set or bipolar fuzzy set W= (u*, W) is called a bipolar fuzzy
subgroup of G if for x,yeG,

i W(xy) = min {p'(x), u* (y)}

il w(xy) < max {W(x), W(y)}

jii. u'x7) =), ) =)

2.6 Definition [9]

A bipolar-valued fuzzy set or bipolar fuzzy set L= (", W) iscalled a bipolar anti-fuzzy
subgroup of G if for x,ye G,

ipf(xy) < max {p(x), u'(y)}

f(xy) > min (1), W (y))

L) = e, ) = ).
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3. Pseudo Bipolar Fuzzy Cosets And Pseudo Bipolar Fuzzy Double
Cosets Of Bipolar Fuzzy And Bipolar Anti-Fuzzy Subgroups And
Their Properties:

In this section, we define the concepts of pseudo bipolar fuzzy cosets, pseudo bipolar fuzzy
double cosets of a bipolar fuzzy and bipolar anti-fuzzy subgroups of a group and discuss some of
their properties.

3.1 Definition

Let = (u*,)") be a bipolar fuzzy subgroup of a group G and let a € G. Then the pseudo bipolar
fuzzy coset (a].i)P = (((ap,t)P)+ , ((au)P) ) is defined by

L.((aw)")" (x) = Ip()l 1u* (x)
ii.((au)P) “(x)=lp(@lu (x) foreveryx e G

and for some peP, where P = {p(x)/p(x)e[-1,1]andp (x) #0forallx e G }.
3.2 Example

Let G be a Klein’s four group. Then G = {e,a,b,ab} where a=e= bz, ab = ba and e is the identity
element of G. Define a bipolar fuzzy subset = (u*,1t") on G as,

0.6 ,if x=¢ -07 ,if x=e
u'(x)=404 ,if x=a w(x)=:-0.6 ,if x=a
0.3 ,if x =b,ab - 04 ,if x=>b,ab
Let us take p as follows
0.8 ,if x=e
0.6 ,if x=a
POO=104 i x=b
0.3,if x=ab

Now we calculate the pseudo bipolar fuzzy coset of = (u*, ") .For the identity element e of

the group G, we have (ep)” = .

For the element a of G, we have

0.36 ,if x=¢
(aw®)*(x) =[p(a)| p*(x)=10.24 ,if x=a
0.18 ,if x =b,ab
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-042 ,if x=e
(aw®) (x) =|p@)| p (x) = {-0.36 ,if x=a
-0.24 ,if x =b,ab
For the element b of G, we have
0.24 ,if x=e
(bW (x) = [pd)|u*(x) = 10.16 ,if x=a
0.12 ,if x =b,ab
-0.28 ,if x=e
(b)) (x) =|p(b)| " (x) = {-0.24 ,if x=a
-0.16 ,if x =b,ab

For the element ab of G, we have

0.18 ,if x=e
((abw®)* (x) = |p(ab)| p*(x) = {0.12 ,if x=a
0.09 ,if x=b,ab
-0.21 ,if x=e
((abw)*) (x) =|p(ab)| p (x) = {-0.18 ,if x=a
-0.12 ,if x =b,ab

Note: The pseudo bipolar fuzzy cosets of p=(u*,u") are bipolar fuzzy subgroups of G
since u (€)= p"(x) andp (e) < p (x).

3.3 Definition

Let p=(u",1) be a bipolar anti-fuzzy subgroup of a group G and let a € G. Then the pseudo
bipolar fuzzy coset (ap,t)P = (((ap,t)P)+ , ((aj,t)P) 7) is defined by

L((aw")" ) = Ip@lu* (x)

ii.((au)P) “(x) = Ip(a)lu (x) ,forevery x € G and for some
p € P, Where P ={p(x) / p(x) € [-1,1] and p(x) #0 for all x € G}.
3.4 Example

Let G be a Klein’s four group. Then G = {e,a,b,ab} where a=¢= b2, ab = ba and e is the
identity element of G. Define a bipolar fuzzy subset = (u*,1 )onG as,
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03 ,if x=e
p(x)=405 ,if x=a
0.7 ,if x =b,ab

-04 ,if x=e
p(x)=9-0.6 ,if x=a
-0.8 ,if x=b,ab

Clearly p=(u*,u") is a bipolar anti-fuzzy subgroup of G.

Let us take p as follows

-0.6 ,if x=e
-0.5 ,if x=a

p(x) =

-0.7 ,if x=b

-0.8,if x=ab

Now we calculate the pseudo bipolar fuzzy coset of p = (u*, ") For the identity element e of

the group G ,we have (ep)’ = .

For the element a of G, we have

(aw™)* () =[p()] 1" (x) =

(™) () = |p@)| p x) =

For the element b of G, we have

((b™)* (%) = [p(b)] W™ (x) =

((bw®) () = [p®d)| p (x) =

For the element ab of G, we have

0.15 ,if x=e
0.25 ,if x=a
0.35,if x =b,ab
-0.20 ,if x=e
-0.30 ,if x=a
-0.40 ,if x =b,ab
0.21 ,if x=e
0.35 ,if x=a
0.49 ,if x =b,ab
-0.28 ,if x=e
-042 ,if x=a
-0.56 ,if x =b,ab
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024 ,if x=e

((abw)* (x) = [p(ab)| u*(x) = 10.4 ,if x=a
0.56 ,if x =b,ab

-0.32 ,if x=e
((abw)®) (x) =|p(ab)| u (x) = {-0.48 ,if x=a
-0.64 ,if x =b,ab

Note: The pseudo bipolar fuzzy cosets of p=(u*,u ) are bipolar anti-fuzzy subgroups
of G since u*(e) < pu*(x) andp (e)> p (x).
3.5 Definition

Let i and ¢ be any two bipolar fuzzy subgroups of a group G, then pseudo bipolar fuzzy double
coset (Lag)® is defined by

i (uap)’)" =(@w’ N (ag)’)"
ii. ((ua@)’ )™ = ((ap)’ M (ap)’)” where ae G for some peP.
3.6 Example

Let G ={1,-1,i,-1} be a group under the binary operation multiplication. Let bipolar fuzzy

subsets w=(u",u) and @ =(¢",¢ )on G are defined as,

0.7 ,if x=1 -06,if x=1
n(x)=<0.6 ,if x=-1 p(x)=4-04 ,if x=-1
04 ,if x=1,-1 -03 ,if x=1, -1
0.8 ,if x=1 -07,if x=1
¢ (x)=410.5 ,if x=-1 ¢ (x)=4-03 ,if x=-1
0.3 ,if x=1,-1 -02 ,if x=1, -1

Clearly u=(u",1) and @ =(¢*,¢ ) are bipolar fuzzy subgroups of G.

Let us take p as follows p(x) = —0.3 for every xe G, then the pseudo bipolar fuzzy cosets are,
0.21 ,if x=1
(aw®)" (x) =|p@)|pn" (x)=140.18 ,if x=-1
0.12 ,if x =1,-1
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-0.18 ,if x=1

(@) () =|p@| W (x) = {-0.12 ,if x=-1
-0.09 ,if x =1,-1

024 ,if x=1
(@9)")" (x) = |p(@)| ¢* (x)=10.15 ,if x=-1
0.09 ,if x =i,~i
~0.21 ,if x=1
(@p)") (%) =|p@| ¢ (x) = {-0.09 ,if x=-1
~0.06 ,if x =i,-i

Now the pseudo bipolar fuzzy double cosets are

0.21 ,if x=1 -0.18 ,if x=1
((nag)®)*(x)= <0.15 ,if x=-1 ((nag)®) (x) = 1-0.09 ,if x=-1
0.09 ,if x=1,-1 -0.06 ,if x =1,-1

3.7 Definition

Let 1 and ¢ be any two bipolar anti-fuzzy subgroups of a group G, then pseudo bipolar fuzzy
double coset (uap)® is defined by

i ((Lag)’ )" = ((aw)’ N (ag)’ )"
ii. ((ua@)’ )™ = ((ap)’ M (a@)’)” where ac G for some peP.

3.8 Example

Let G ={1,-1,i,-i} be a group under the binary operation multiplication. Define bipolar fuzzy

subsets w=(u",u) and @ =(¢",¢ )onG as,

04 ,if x=1 -03,if x=1
u(x)=:0.6 ,if x=-1 nwx)=<-04 ,if x=-1
0.7 ,if x=1,-1 -0.6 ,if x=1, -1
0.3 ,if x=1 -0.2,if x=1
¢ (x)=+0.5 ,if x=-1 o (x)=<-0.5 ,if x=-1
0.8 ,if x=1,-1 -0.7 ,if x=1i, -1

Clearly, p=(u*,u) and @ =(¢", ) are bipolar anti-fuzzy subgroups of G.
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Let us take p as follows p(x) = 0.2 for every xe G, then the pseudo bipolar fuzzy cosets are,

0.08 ,if x=1
(aw®)" (x) =|p@)|p" (x)=10.12 ,if x=-1
0.14 ,if x =1i,-1
-0.06 ,if x=1
(aw®) (x) =|p@| p (x) = {-0.08 ,if x=-1
~0.12 ,if x =1,-1i
0.06 ,if x=1
(a9)")" (x) =|p(a)| 9" (x) =40.10 ,if x=-1
0.16 ,if x =1i,-1
-0.04 ,if x=1
(a9)*) (x) =|p@)| ¢ (x) = <-0.1 ,if x=-1
-0.14 ,if x =1i,-1

Now the pseudo bipolar fuzzy double cosets are

0.08 ,if x=1 ~0.06 ,if x=1
(na@)*)* (x)= 10.12 ,if x=-1 (na@)*) (x) = {-0.1 ,if x=-1
0.16 ,if x =i,i ~0.14 ,if x =i,

3.9 Theorem

If p=(u",u) be a bipolar fuzzy subgroup of a group G, then the pseudo bipolar fuzzy
coset (au)P = (((ap)P)+, ((au)P)_) is a bipolar fuzzy subgroup of a group G.

Proof:Let = (u",u") be a bipolar fuzzy subgroup of a group G.

For every x and y in G, we have,

i (@aw) xy = p@lp" (xy ™)
> Ip(a)l min { p* (x), p* (y)}
=min {Ip(a)l p* (x), Ip(@)l n* (y)}
=min {((ap)")" (x), ((aw")* (y)}
Therefore, ((aw)")* (xy ) > min {((ap)")* (x), (aw)")* ()}

i, (@w’) (xy )= Ip@lu (xy ™)
< Ip(@)lmax{ p (x), p (y)}
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=max {Ip(a)l & (x), I p(a)l w (y)}

=max {((ap)")” (%), (aw)")” ()}

Therefore, ((ap)")” (xy ™) < max{((aw)")” (x), ((ap)")” (y)}
Hence (ap)" is a bipolar fuzzy subgroup of a group G.

Note: (ap)” is called as a pseudo bipolar fuzzy subgroup of a group G if Ip(a)l < Ip(e)!, for
every acG.

3.10 Theorem

If w=(u",n )be abipolar anti-fuzzy subgroup of a group G, then the pseudo bipolar fuzzy
coset (au)P = (((au)P)+, ((au)P)_) is a bipolar anti-fuzzy subgroup of a group G.

Proof:It is clear from the Theorem 3.9

Note: (ap)® is called as a pseudo bipolar anti-fuzzy subgroup of a group G if Ip(a)l >
Ip(e)l, for every aeG.

3.11 Theorem

If pu=(u",u)and ¢ = (9", )are two bipolar fuzzy subgroups of a group G, then the pseudo

bipolar fuzzy double coset (na)” = (((nag)")*, ((na@)")") determined by pu and ¢ is also a bipolar
fuzzy subgroup of the group G.

Proof: For all x,y € G,

L (pae)) (xy ™ = {((aw’ N @p)’) " Jxy ™)

= min { ((aw)")" (xy™) . (ap)")" (xy )}
min { Ip(a)l 1" (xy ™), Ip(a)l 9" (xy )}
Ip(2)l min { p* (xy™), ¢" (xy )}
Ip(@)l min {min { p* (x), u*(y)}, min{ ¢*(x), 9" (y) }}
Ip(2)l min {min { u*(x), " (x)}, min{ p*(y), ¢" (y)}}

= min{min{lp(a)l u* (x) , Ip(a)l " (x)}, min { Ip(a)l p* (y), Ip(2) ¢* (y)}}

min{min{((ap)")"(x),((a)")"(x) },min{((ap)") (y),((ap)") " (y)} }
min {((ap)’ N (29)") " %), ((ap” N (ap)") * (y)}
min {(( pap)")* (x) , (nap)")" (y) }

v

i (ap)") (xy )= {(@w’ N (ap)") " }(xy™")
=max { ((ap)") (xy ), (a)") (xy )}
=max { | p@)lp (xy),Ip@l e (xy )}
= Ip(@)l max { k" (xy™), ¢ (xy )}
< Ip(a)l max {max { p (x), p (y)}, max{ ¢ (x), ¢ (y) }}
= Ip(a)l max {max { p (x), o (x)}, max{ p (y), ¢ (y)}}
= max{max{Ip(a)l & (x) , Ip(2)l ¢~ (x)}, max{Ip(a)l L (y), Ip(@)l ¢~ (y)}}
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max {max{((ap)")” (x), (ap)")” (%)}, max{((ap)") " (y), (ap)") (y)}}

max {((ap)’ M (ap)") ™ (), ((aw)’ M (a9)") ™ (y)}
max {(( pap)")” (%), (pap)”)~ (y) }

Hence, (nag)” = (((na9)”)*, ((ua@)?)") is a bipolar fuzzy subgroup of the group G.

3.12 Theorem

If u=(u",n )and @= (9", )are two bipolar anti-fuzzy subgroups of a group G, then the

pseudo bipolar fuzzy double coset (ua(p)P = (((ua(p)P)+, ((ua(p)P)_) is also a bipolar anti- fuzzy
subgroup of the group G.

Proof: For all x,y € G,

i (pae)) (xy ™ = {((aw)’ N @p)’ ) Jxy ™)
=max { (aw")* (xy ), (ap)")" (xy )}
=max { Ip@)l p* (xy ), Ip@)l ¢* (xy "}
Ip(a)l max { p* (xy ™), ¢" (xy )}
Ip(a)l max {max { p*(x), p* (y)}, max{ ¢" (x), 9" (y) }}
Ip(a)l max {max { p* (x), 0" (x)}, max{ p* (y), ¢"(y)}}
= max{max{Ip(a)l u* (x), Ip(a)l 9" (x)},max { Ip(a)l u* (y), Ip@! ¢" (y)}}
= max{max{((ap)")"(x),((ap)")" () },max{((aw)")*(y),((ap)") (y)} }
= max {((aw’ N @ap)") " ), (aw’ N (@p)") " (y)}
= max {(( pag)")" (x), ((na@)")* (y) }

IIA

i, ((ap)") (xy ) = {(@w’ N (@p)") " }(xy™)
=min { ((aw)")" (xy ™), (ap)") (xy )}
= min { Ip()l W (xy™), Ip@! ¢ (xy™)}
= Ip@lmin { & (xy™), ¢ (xy )}
> Ip(2)l min {min { p~ (x), p (y)}, min{ ¢~ (x), 0" (y) }}
= Ip(2)l min {min { p" (x), " (x)}, min{ P (y), ¢ (y)}}
= min{min{lp(a)l p" (x) , Ip()l ¢~ (x)}, min{lp(2)l w (y), Ip(@) ¢ (y)}}
= min {min{((ap)")” (%), ((ap)")” ()}, min {((aw)")" (y), (a)")" (¥)}}
= min {((aw)’ M (29)")~ %), ((a" N (@p)") ™ ()}
= min {((na9)")~ (x), ((nap)")~ (y) }
Hence, (nag)” = ((na9)”)*, ((ua@)?)") is a bipolar anti-fuzzy subgroup of the group G.

4. Pseudo bipolar fuzzy cosets and Pseudo bipolar fuzzy double cosets of
bipolar fuzzy and bipolar anti-fuzzy HX subgroups and their
properties:

In this section, we define the concepts of pseudo bipolar fuzzy cosets, pseudo bipolar fuzzy
double cosets of a bipolar fuzzy and bipolar anti-fuzzy HX subgroups of a HX group and discuss
some of their properties.

10
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4.1 Definition [2]

Let G be a finite group. In 2° —{¢}, a nonempty set ¥ < 2° {0} is called a HX group on G, if
¥ is a group with respect to the algebraic operation defined by AB={ab/a
€ A and b € B}, which its unit element is denoted by E.

4.2 Definition [9]

Let O be a non-empty set. A bipolar-valued fuzzy set or bipolar fuzzy set A, in ¥ is an
object having the form A, = {(A, A,"(A), A, (A)) : A € O} where A, : 0 — [0,1] and A, : O —
[-1,0] are mappings. The positive membership degree A,"(A) denotes the satisfaction degree of
an element A to the property corresponding to a bipolar-valued fuzzy set A, = {(A, A,(A),
Ay (A)): A € ¥} and the negative membership degree A, (A) denotes the satisfaction degree of an
element A to some implicit counter property corresponding to a bipolar-valued fuzzy set A,
={(A, L (A), A (A)): A e O} If A (A)#0 and XA, (A) =0, it is the situation that A is
regarded as having only positive satisfaction for A, = {(A, 1,"(A), Ay (A)): A € 8}. If A, (A)
=0 and A, (A)#0, it is the situation that A does not satisfy the property of A, = {(A,
M(A), M (A)) : A € 9}, but somewhat satisfies the counter property of A, = {(A, A,"(A),
M (A)): Ae9}. Tt is possible for an element A to be such that A,"(A) #0 and A, (A) #0
when the membership function of property overlaps that its counter property over some
portion of 9. For the sake of simplicity, we shall use the symbol A, = (A,", A, ) for the
bipolar-valued fuzzy set A, = {(A, A,"(A), L, (A)): A € O}

4.3 Definition [9]

Let p=(u",u )be abipolar fuzzy subset defined on G. Let & < 29—{0} be a HX group of G.

A bipolar fuzzy set A, = (A", A, ) defined on O is said to be a bipolar fuzzy subgroup
induced by pon ¥ or abipolar fuzzy HX subgroup of ¢ if for A,B €9,

.4 (AB) > min{ X,"(A), A, (B)}
ii.A, (AB) < max{ A, (A), A, (B)}
i, (A™) = 4,7 (A), 4 (AT =4, (A).
Where M (A) = max {u'(x)/forallxe Ac G} and
A (A)=min {p(x)/forall x e A cG}.

Remark [9]

i. If u is a bipolar fuzzy subgroup of G then the bipolar fuzzy subset A, = (A", A,) is a fuzzy
HX subgroup on 9.

ii. Let u be a bipolar fuzzy subset of a group G. If , = (A", 1) is a bipolar fuzzy HX subgroup
on 9, then p need not be a bipolar fuzzy subgroup of G.

4.4 Definition [9]

Let p=(u",u )be a bipolar fuzzy subset defined on G. Let & c 29—{¢} be a HX group of

G. A bipolar fuzzy set A, = (A", A, ) defined on 9 is said to be a bipolar anti- fuzzy subgroup
induced by W on ¥ or a bipolar anti-fuzzy HX subgroup of ¥ if for A, Be ¥,
11



Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014

i (AB) < max { A, (A), 1,"(B)}
ii.A, (AB) > min { A, (A), 2, (B)}
i, (A™) = L, (A), 4, (AT =1, (A).
Where M (A) = min {p*(x)/forallxe Ac G} and
A (A) = max{p (x)/forallx e A c G}

Remark [7]

LIf p=(u",pn )is a bipolar anti-fuzzy subgroup of G then A, = (A,*, A,") is a bipolar anti-
fuzzy HX subgroup on 0.
2.Let pw=(u",u") be abipolar fuzzy subset of a group G. If A, = (A,*, A,,") is a bipolar anti-

fuzzy HX subgroup on 9,then p = (", ") need not be a bipolar anti-fuzzy subgroup of G.

4.5 Definition

Let A, = (A,"A,") be a bipolar fuzzy HX subgroup of a HX group © and A € ¥. Then the pseudo
bipolar fuzzy coset (A,)" = (((AL)")", ((AL,)")) is defined by

1AM (X) = Ip(A)I 4, (X)
ii.((AX”)P) “(X) = Ip(A)I A, (X).For every X € ¥ and
iii.

for some pe P Where P = {p(X) / p(X) € [-1,1] and p(X)# 0 for all Xe U}.

4.6 Example

Let G ={1,-1,i,-1} be a group under the binary operation multiplication. Define a bipolar

fuzzy subset p=(u*,1) onG as,

0.8 ,if x=1 -07,if x=1
n(x)=<0.7 ,if x=-1 n(x)=4-0.6 ,if x=-1
05,if x=1,-1 -04 if x =1, -1

Clearly p=(u*,u") is abipolar fuzzy subgroup of G.

Let 0= {{1,-1},{i,—-i}}={ EA },where E = {1,-1}, A= {i, i} .Clearly (9, -) is a HX
group. Let A, = (A,",A,7) be a bipolar fuzzy subset on ® induced by p=(u",u") on Gis,

0.8 ,if X=E
0.5 ,if X=A

-0.7,if X=E

2 (X) =
o 30 { - 04 ,if X=A

A, (X)= {

12
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05 ,if X=E

Let us tak follows: p(X) =
et us take p as follows: p(X) {0.66 it X=A

the pseudo bipolar fuzzy cosets are,

0.40 ,if X=E

i (BX)) X = [pE] 2,700 = ¢ " if X=A

,if X=E
Jf X=A

(BL,)") (X) = [pB) &, (X)

ii. (AP (X) = [pA)] 4, (X) = 0.132 ,if X=A

-0.452 ,if X=E

() 0= [pa)] 2,00 =4~ 0

{
o
{0528 Jif X=E
{

Note: If p(X)=%1, for all Xe 0, then (X 1,)" =2,

4.7 Definition

Let A, = (A,",A, ) be a bipolar anti-fuzzy HX subgroup of a HX group ¢ and let A € O. Then
the pseudo bipolar fuzzy coset (Aku)P = (((AKH)P)J', ((AKH)P)_) is defined by

LAWY (X) = Ip(A)l 1,7 (X)

ii.((A2)") ™ (X) = 1 p(A)I A (X)

iii.
for every X € ¥ and for some pe P, Where P = { p(X) / p(X) € [-1,1] and p(X) = 0 for all
Xe 9}

4.8 Example

Let G = { e,a,b,ab } be a group under the binary operation multiplication. Where a’=e = b*, ab =
ba and e is the identity element of G .Define a bipolar fuzzy subset = (L*,)1") on G as,

04 ,if x=e -05,if x=e
n'(x)=40.5 ,if x=a pw(x)=4-0.6 ,if x=a
0.8 ,if x=b,ab -0.7 ,if x=b,ab

Clearly = (u",p") is a bipolar anti fuzzy subgroup of G.

Let O ={{e,a},{bab}} ={ E,A}, where E={e,a} , A= {b,ab} .Clearly (9, -) is a HX group.
13



Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014

Let A, = (A, A,) be a bipolar fuzzy subset on ¥ induced by u = (u*,u”) on G is,

. 04 ,if X=E i -0.5,if X=E
ATX) = ) A (X)= )
0.8 ,if X=A -0.7 ,if X=A

0.6 .,if X=E

Let us tak follows: p(X) =
et us take p as follows: p(X) {0.5 i X=A

the pseudo bipolar fuzzy cosets are,

024 ,if X=E

i. (BA)") (X = [pB] 4, X) = 0.48 ,if X=A

(BL,)") (X) = [pB)| A, (X) =

{
{ ,if X=E
Lo

042 if X=A

i AL )P (X) = [pA) 1, (X) = neeh

ii. (AL)") (X) = |p u 04 ,if X=A
M 00 = o] 2 x) = | 7023 X=E
(ALY )= PAI 2 () =0 38 i xoa

Note: If p(X)==*1 and p(X)#0 , for all Xe ¥, then (X A,)" =4,
4.9 Definition

Let A, = (A", A, ) and 6,= (0, , G, ) be any two bipolar fuzzy HX subgroups of a HX group 9,
then pseudo bipolar fuzzy double coset (XHAG([,)P = (((kHAG¢)P)+’ ((kuAc(p)P)_) is defined by

1L(AGH)")" (X) = (AN (AG,)")" (X) = min{(AL))) (X) , (A" (X) }
i.(MAG,)") (X) = (AL)" N (AG,)") (X) = max{(AL)") (X), (AGy)") (X))}

for every X € ¥ and for some pe P, Where P = {p(X) / p(X) € [-1,1], p(X) #0 for all Xe U}.

4.10 Example

Let G ={1,-1,i,-i}be a group under the binary operation multiplication. Define a bipolar

fuzzy subsets = (u",n) and =(¢*,9 ) on G as,

0.8 ,if x=1 -0.6,if x=1
n(x)=40.6 ,if x=-1 p(x)=<-04 ,if x=-1
0.3 ,if x =1,-1 -0.2 ,if x =1, -1

14



Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014

0.9 ,if x=1 -08,if x=1
¢ (x)=40.5 ,if x=-1 ¢ (x)=:-0.6 ,if x=-1
0.2 ,if x=1,-1 -0.1 ,if x =1, -1

and let O = {{1,-1},{i,-i}} = {E,A}, where E= {1, -1}, A= {i, —i}.Clearly (¢, -) is a HX
group. Let 2, = (', A, ) and o, = (0, , G, ) are bipolar fuzzy subsets on ¥ induced by
p=(",p) and =(¢",¢ )on Gare

0.8 ,if X=E . -06,if X=E
ATX) = ) A (X)= )
. 03 ,if X=A . -02 ,if X=A
. 09 ,if X=E . -08,if X=E
5, (X)= , c, X)= .
0.2 ,if X=A -0.1,if X=A

Then the pseudo fuzzy cosets (A),)" and (Ac,)’ for p (X)=—-0.4, forevery X € ¥ is

0.32,if X=E

LR 0= ] 4,00 = 4

-0.24 ,if X=E

(A1) X = [pA) A, (X) =1 0.08 if X< A

i. ((As,)")' (X)= [pA)] o, X) =

-0.32 ,if X=E

(A0, (0= [p] o, (0 = 1S

and Now the pseudo bipolar fuzzy double coset determined by A, and G, is given by

((X A )p)+ X) 0.32,if X=E ((7» A )p)_(X) -0.24 ,if X=E
(0 = o =
e 0.08 ,if X=A "~ e -0.04 ,if X=A

Note:

15
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Similarly we can define pseudo bipolar fuzzy double cosets on a bipolar anti-fuzzy HX subgroup
of a HX group.

4.11 Theorem

If A, = (A", A,) be abipolar fuzzy HX subgroup of a HX group ¥, then the pseudo bipolar
fuzzy coset (AKH)P = (((AXH)P)J', ((AKH)P)_) is a bipolar fuzzy HX subgroup of a HX group 0.

Proof:Let A, = (A,", %,") be abipolar fuzzy HX subgroup of a HX group .
For every X and Y in 9, we have,

L (AW XY™ = Ip(A)l A" (XY

Ip(A)l min { A" (X), A" (Y)}

min { Ip(A)I A" (X), Ip(A) A, (Y)}

= min {((A))")" (X), (AMD) ()}

Therefore, ((Al)")" (XY™ >min {((AM)")" (X), (AX)D)" (Y)}

I 1v

ii. (A%H) (XY™ = Ip(A)l A, (XY™
< Ip(A)l max{ A (X), Ay (Y)}
=max {Ip(A)l A, (X), Ip(A) A, (Y)}
= max {(Al)")” (X), (A" ()}
Therefore, ((AL,)")” (XY ") < max{((AL)")” (X), (AA)") (Y)}
Hence (AKH)P is a bipolar fuzzy HX subgroup of a HX group 9.

Note: (A?u”)P is called as a pseudo bipolar fuzzy HX subgroup of ¥ if Ip(A)I<Ip(E)l for every A
e V.

4.12 Theorem

If 4, = (\,", A,) be a bipolar anti-fuzzy HX subgroup of a HX group 9, then the pseudo
bipolar fuzzy coset (AKH)P is also a bipolar anti-fuzzy HX subgroup of a HX group 0.

Proof: it is clear from Theorem 4.11.

Note: (AL, is also called as pseudo bipolar anti-fuzzy HX subgroup of © if Ip(A)l > Ip(E)! for
every Ae .

4.13 Theorem

If ,,=(,",\,)andc,=(0, , G, ) are two bipolar fuzzy HX subgroups of a HX group 9, then
the pseudo bipolar fuzzy double coset (XMAG@)P = (((XMAG(p)P)*, ((XMAG@)P)_) determined by 2,
and o, is also a bipolar fuzzy HX subgroup of the HX group 0.

Proof: For all X, Y € 1,

1 (MAG)") (XY ™) = (ALY N (AT )" HXYT)
16
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=min { (A" (XY™, (Acy))" (XY™}
min { Ip(A)I 4,7 (XY "), Ip(A)l 6, (XY ")}
Ip(A) min { 4," (XY "), 6,7 (XY ™)}
Ip(A)l min {min { A, (X), A,* (Y)}, min{ 6," (X), 6," (Y) }}
Ip(A)l min {min { 4, (X), 6,"(X)}, min{ 4,*(Y) , 6," (Y)}}
= min{min{ Ip(A)I 4, (X) , Ip(A)l 6,"(X)}, min { Ip(A)l A" (Y), Ip(A)l 6,"(Y)}}
min{min{((A%)")"(X),(AG,)")"(X) },min{ (A" (X),(Ac,)") " (X)}}
min {((A%)" N (Acy)") " (X), (AL N (Ac,)" )" (Y)}
min {(LAG)")" X) , (LAGY)" (Y) }

v

ii.(MAGY)") (XY ™) = {(AM)' N (Ac,)" )™ HXY ™)
=max { (A%)") (XY™, (Ac,)") (XY™}
max { Ip(A)l &, (XY ™), Ip(A)l o, (XY™}
Ip(A)l max { 4, (XY™, 0, (XY}
Ip(A)l max {max { A, (X), A, (Y)}, max{ 6, (X), 0, (Y) }}
[p(A)l max {max { A, (X), 6, (X)}, max{ A, (Y),0, (Y)}}
max{max{Ip(A)l &, (X) , Ip(A)l 6,” (X)}, max{Ip(A)l &, (Y), Ip(A)l 6, (Y)}}
max {max{((A})") (X), (Ac,)")” (X)}, max{((AX)") ™ (Y), (Ac,)") (Y)}}
max {((Al)" N (AG)" )™ (X), (Al)" N (AGy)") ™ (Y)}
max {((AA6,)")” (X), (hAG,)") ™ (Y) }
Hence, ()»MA(S@)P = (((XMAGQ,)P)*,((XuAcw)P)_) is bipolar fuzzy HX subgroup of the HX group 9.

[ VAN T

4.14 Theorem

If A,=(,, A\ )andc,=(0,",0,) are two bipolar anti-fuzzy HX subgroups of a HX group ¥,
then the pseudo bipolar fuzzy double coset (XMAG@)P = (((XMAGQ)P)J', ((XMAGQ))P)_) determined by
A, and o, is also a bipolar anti-fuzzy HX subgroup of the HX group 0.

Proof : Forall X, Y € ¥,

i (AG)N (XY ™) = {(AM)" N (Acy)") " HXY™)
=min { (A" (XY™, (Acy))" (XY™}
min { Ip(A)l A, (XY ™), Ip(A)l o," (XY ")}
Ip(A)l min { 4," (XY ™), 6, (XY™}
Ip(A)l min {max { A,* (X), A" (Y)}, max{ 6," (X), 6," (Y) }}
Ip(A)l max {min { 4,*(X), 6," (X)}, min{ 1,* (Y), 5," (Y)}}
= max{min{ Ip(A)I ,* (X) , Ip(A)l &," (X)}, min { Ip(A)] A, (Y), Ip(A)l 6,7 (Y)}}
= max{min{((Ak)")(X),((Ac,)")"(X) },min{ ((AL)")"(Y),(Ac,)")"(Y)}}
max {((Al)" N (AGy)") " (X), (A" N (Ac,)")* (Y)}
max {((MAG)")" (X), (MAGH)")" (Y) }

IIA 1

ii.(MAGY") (XY ™) = {(AM" N (Ac,)" )™ HXY ™)
=max { (Al)") (XY™, (Ac,)") (XY ™)}
max { Ip(A)l L, (XY™, Ip(A)l o, (XY ™)}
Ip(A)l max { 4,” (XY "), 0, (XY}
Ip(A)l max {min { A,” (X), A, (Y)}, min{ 6, (X), 5, (Y) }}
Ip(A)l min {max { A, (X), 6, (X)}, max{ A, (Y), 6, (Y)}}
= min{max{Ip(A)I A, (X), Ip(A)l 6, (X)}, max{Ip(A)l A, (Y), Ip(A)l 6, (Y)}}
= min {max{((A%)") " (X), (Acy)") (X)}, max{((Ak)") ™~ (Y), (Ac,)") (Y)}}

v
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= min {(AL)" N (AG,)") ™ (X) . (Al)" N (Acy)”) ™ ()}
= min {(AG,)") ™ (X) . (LAG)N) ™ (Y) }

Hence, (L,AG,)" = (LAG,)"), (MLAG,)")) is abipolar anti-fuzzy HX subgroup of the HX
group U.

4.15 Theorem

Intersection of any two pseudo bipolar fuzzy HX subgroup on a HX subgroup ¥ is also a pseudo
bipolar fuzzy HX subgroup of 9.

Proof:Let  (AL,)" = (AA)), (AL)")) and (Ac,)’ = ((Ac,)"), ((Ac,)")) be any two
pseudo bipolar fuzzy HX subgroups of a HX group ¥.Now, Intersection of any two pseudo
bipolar fuzzy HX subgroup on a HX subgroup ¥ is ((AKH)P N (AG¢)P) = (((Aku)Pm (A%)P ),
(A%’ N (AGy)")7)

i ((AR)'N (AN)") " (XY ™) = min {((AW)))" (XY, (AG))" (XY ™) }

min { Ip(A)I A, (XY ™), p*(A) 6,7 (XY )}
Ip(A)l min{ A, (XY ™), 6," (XY}
Ip(A)l min{min{ A, (X), A,* (Y)}, min{ &, (X), 6," (Y)}}
Ip(A)l min{min{ A," (X), 6," (X)}, min{ 1,* (Y), 6," (Y)}}
= min{ Ip(A)l{ min{ A, (X), 6," (X)}, min{ &," (Y), 5," (Y)}}}
= min{min{ Ip(A)l 4,"(X) , Ip(A)l 6,"(X) },min{ Ip(A)I 4, (Y) , Ip(A)l 6,7 (Y)}}
= min {min{((AL)")" (X), (Ac,)")" (X)},min {(AL)")" (), (Acy)")" (Y)}}
= min {((A%)'N (Ac,)") " (X), (ALY M (Acy)") " (Y)}}

LI AV T ||

i. (AM'M (Acy)”) ™ (XY ™) = max {((Al)") ™ (XY™, (Acy)") (XY ™)}
max { Ip(A)l & (XY™, Ip(A)l 6,” (XY™}
Ip(A)l max{ &, (XY "), 0, (XY}
Ip(A)l max{max{ A, (X), A,” (Y)}, max{ 6, (X),0, (Y)}}
Ip(A)l max{max{ A, (X), 6, (X)}, max{ A, (Y),0, (Y)}}

= max{Ip(A)l{max{ A, (X),0, (X)}, max{A, (Y).0, (Y)}}}
max{max{Ip(A)l A, (X) , Ip(A)l 6, (X)},max{lp(A)I A, (Y), Ip(A)l 6, (Y)}}
max {max{((A%)")~ (X), (Acy)")” (X)},max{((Ak)") ™ (Y), (Acy)") (Y)}}
max {((AL)'N (Acy)”) ™ (X), (AL (AG,)") ™ ()}}
Hence the intersection of any two pseudo bipolar fuzzy HX subgroups of a HX group ¥ is also a
pseudo bipolar fuzzy HX subgroup of §.

I IA -1

4.16 Theorem

Intersection of any two pseudo bipolar anti-fuzzy HX subgroup on a HX subgroup ¥ is also a
pseudo bipolar anti-fuzzy HX subgroup of 0.

Proof:Let  (AL,)" = (AL, (AL)P)) and (Ac,)’ = ((Ac,)"), ((Ac,)")) be any two
pseudo bipolar anti-fuzzy HX subgroups of a HX group 9.
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Now, Intersection of any two pseudo bipolar anti-fuzzy HX subgroup on a HX subgroup ¥ is
(AR)" N (AG,)") = (AN (AG,)") ", (ALY N (AG,)"))

i (Ah)'N (A" (XY™ = min {(AM))) (XY™, (Acy)")" (XY ™) }
min { Ip(A)I 4" (XY ™), Ip(A)l 6," (XY ™)}
Ip(A)l min{ A," (XY ™), 6," (XY}
Ip(A)l min{max{ A," (X), &, (Y)}, max{ 6," (X), 6, (Y)}}
Ip(A)l max{min{ A," (X), 6," (X)}, min{ &," (Y), 6," (Y)}}
= max{ Ip(A)l{min{ A" (X), 6," (X)}, min{ &, (Y), 6," (Y)}}}
= max{min{ Ip(A)I 4, (X) , Ip(A)l 6,"(X)}, min{ Ip(A)I 1,*(Y) , Ip(A)l 6,"(Y)}}
= max {min{((A%)")" (X), (Ac,)")" (X)},min {(AL)")" (Y), (Acy)")* (Y)}}
= max {((AL)'N (Acy)")* (X), (AL'M (ASy)") " (Y)}}

(| VAN V|

i (AWM (Acy)") ™ (XY ™) = max {(AL)") (XY ), (Acy)") (XY ™)}

max { Ip(A)l &, (XY™, Ip(A)l 6, (XY™}

Ip(A)l max{ &, (XY ™), 5, (XY}

[p(A)l max{min{ A, (X), A, (Y)}, min{ o, (X),0, (Y)}}

Ip(A)l min{max{ A,” (X), 6, (X)}, max{ A, (Y), 5, (Y)}}

min{ Ip(A){ max{ A, (X), 5,” (X)}, max{ A, (Y), 5, (Y)}}}
min{max{Ip(A)I A, (X) , Ip(A)l 6, (X)},max{Ip(A)l &, (Y), Ip(A)l 6, (Y)}}
min{max{((AL)")” (X), (Acy)")” (X)},max{((AL)") (Y), (Ac,)") (Y)}}
min{((AL)'N (AGy)") ™ (X, (AL)'M (Ac,)”) ™ (Y)}}

v
I

Hence the intersection of any two pseudo bipolar anti-fuzzy HX subgroups of a HX group ¥ is
also a pseudo bipolar anti-fuzzy HX subgroup of 9.

4.17 Theorem

Union of any two pseudo bipolar anti-fuzzy HX subgroup of a HX group ¥ is also a pseudo
bipolar anti-fuzzy HX subgroup of 9.

Proof: Let (AL)" = (ALY, (AL)")) and (Ac,)” = (Acy)")", (Ac,)")) be any two
pseudo bipolar anti-fuzzy HX subgroups of a HX group 9.

Now, Union of any two pseudo bipolar anti-fuzzy HX subgroup on a HX subgroup ¥ is
((AL)" U (AG)") = (AR)" U (AS,)") ", (AL)" U (AG,)")")

i (AL U (AG)") " (XY ™) = max {(AA))" (XY ), (Acy)")" (XY }
max { Ip(A)l A, (XY ™), Ip(A)l o," (XY ™)}
Ip(A)l max{ A, (XY ™), 6,7 (XY™}
Ip(A)l max{max{ A" (X), &, (Y)}, max{ 6," (X), G,  (Y)}}
Ip(A) Imax{max{ A" (X), 6," (X)}, max{ A,* (Y), 6," (Y)}}
= max{Ip(A)l{max{}," (X), 6, (X)}, max{ &, (Y), 5," (Y)} }}

= max{max{ Ip(A)l 1,"(X) , Ip(A)l 6,"(X)} , max{ Ip(A)l &, (Y) , Ip(A)l 6,"(Y)}}
max{ max{((Al)")" (X), (Acy)")" (X)},max {(Al)")" (Y), (Acy)")" (V)}}
max{((A})" U (Ac,)") " (X), (AL U (Acy)") ' ()} }

IIA 1

19



Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014

ii. (AM)'N (AG)") ™ (XY ™) = min {((Ak)") (XY ™), ((Ac,)") (XY™ }
min { Ip(A)l &, (XY ™), I p(A)l 6, (XY}
Ip(A)l min{ A,” (XY "), 6, (XY ")}
Ip(A)l min{min{ A,” (X), A,” (Y)}, min{ 6, (X), 5, (Y)}}
[p(A)l min{min{ A, (X), 6, (X)}, min{ A, (Y), 5, (Y)}}
= min{lp(A)l{ min{},” (X), 5, (X)}, min{ A,” (Y), 6, (Y)}}}
= min{min{lp(A)I A, (X) , Ip(A)l 6, (X)},min{Ip(A)I %, (Y) , Ip(A)l 6, (Y)}}
= min{min{((AL)")” (X), (Ac,)")” (X)},min {((A%)")™ (Y), (AS,)") ()} }
= min{((AL)'U (AGy)") ™ (X) , (AX)"U (Ac,)") ™ (Y)}}

v

Hence the Union of any two pseudo bipolar anti-fuzzy HX subgroups of a HX group ¥ is also a
pseudo bipolar anti-fuzzy HX subgroup of 0.

4.18 Theorem

Union of any two pseudo bipolar fuzzy HX subgroup of a HX group ¥ is also a pseudo bipolar
fuzzy HX subgroup of .

Proof: Let (AL)" = (AM)DY, (ALDD)) and (Ac,)’ = (((Ac,)")', ((Ac,)")) be any two
pseudo bipolar fuzzy HX subgroups of a HX group 9.

Now, Union of any two pseudo bipolar fuzzy HX subgroup on a HX subgroup ¥ is
(AL)" U (AG,)") = (AM)" U (AG,)") ™, (ALY U (AGy)"))

i (A" U(AG)") " (XY™ = max {(AM))" (XY ), (Acy)")" (XY ™) }
max { Ip(A)l 4,7 (XY ™), Ip(A)l o," (XY}
Ip(A) max{ &," (XY™, 6," (XY )}
Ip(A)l max{min{ A" (X), &,* (Y)}, min{ 6," (X), 5," (Y)}}
Ip(A)l min{max{ &," (X), 6," (X)}, max{ &," (Y), 0," (Y)}}

= min{ Ip(A)l{max{ A, (X), 6, (X)}, max{ 1,* (Y), 6," (Y)}}}
min{max{ Ip(A)l A,"(X) , Ip(A)l 6,"(X)}, max{ Ip(A)l 1,°(Y), Ip(A)l 6,7 (Y)}}
min{max{((AL)")" (X), (Ac,)")" (X)},max {((Al)")" (Y), (Ac,)")" (Y)}}
min{((Ak)" U (Ac,)") " (X) , (ALY U (Acy)")* (Y)})

v

ii. ((Al)"'N (AG,)") ™ (XY ™) = min {((A%)")” (XY ™), ((Acy)")” (XY )}

min { Ip(A)l &, (XY "), Ip(A)l 6, (XY )}
Ip(A)l min{ &,” (XY™, 5, (XY}
Ip(A)l min{max{A,” (X), A, (Y)}, max{oc, (X),o, (Y)}}
Ip(A)l max{min{ A, (X), o, (X)}, min{ &, (Y), o, (Y)}}
= max{ Ip(A){min{A, (X), 6, (X)}, min{A, (Y), 0, (Y)}}}

= max{min{lp(A)l &, (X) , Ip(A)l 6, (X)}, min{Ip(A)l A, (Y) , Ip(A)l o, (Y)}}

= max{min{((A%)")” (X), (AS»)")™ (X)}.min {(AL)") (Y), (AGy)") (Y)}}

= max{((AL)"U (AG,)") ™ (X), (ALY"U (AG,)") ™ (Y)}}
Hence the Union of any two pseudo bipolar fuzzy HX subgroups of a HX group ¥ is also a
pseudo bipolar fuzzy HX subgroup of 8.

[ VAN T
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CONCLUSIONS

We have given the notion of the pseudo bipolar fuzzy cosets and pseudo bipolar fuzzy cosets of
bipolar fuzzy HX subgroup and bipolar anti-fuzzy HX subgroup of a HX group. The union and
intersection of pseudo bipolar fuzzy HX subgroups and pseudo bipolar anti-fuzzy HX subgroups
of a HX group are discussed. We hope that our results can also be extended to other algebraic
system.
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