
Machine Learning-Guided Dynamic Sorting Algorithm
Selection

Femi Ojo and Sowmya Guntupalli

Kennesaw State University

Abstract. Sorting is a core operation in computer science, crucial for tasks such as data pre-
processing, database indexing, and scientific computing. Traditional sorting algorithms—like
Quick Sort, Merge Sort, and Insertion Sort—typically employ static strategies and often fail
to adapt optimally to varying data characteristics. Hybrid approaches such as TimSort intro-
duce some adaptivity but rely on fixed heuristics rather than learned behavior. In this work,
we propose a machine learning-guided framework for dynamic sorting algorithm selection,
leveraging dataset features such as approximate sortedness, unique value ratio, variance, en-
tropy approximation, value range, and integer data flags. Our approach predicts and applies
the most efficient sorting algorithm for each dataset, thus minimizing runtime and improv-
ing resource efficiency. Experiments conducted on diverse synthetic datasets demonstrate the
framework’s high accuracy and robust performance improvements. This research highlights
the potential of data-driven adaptive strategies in foundational algorithm design and sets
the stage for future exploration into distributed and real-time learning scenarios.

Keywords: Algorithm selection, Sorting algorithms, Machine learning, Counting sort,
Quick sort, Merge sort, Insertion sort, Data-driven optimization

1 Introduction

Sorting is a fundamental building block in computer science, forming the backbone of
numerous operations such as database indexing, search optimization, data visualization,
and scientific simulations. Classical algorithms—including Quick Sort, Merge Sort, and
Insertion Sort—are each designed to perform optimally under specific data conditions.
Quick Sort is renowned for its average-case speed on general datasets, Merge Sort guaran-
tees stable performance and predictable O(n log n) complexity, while Insertion Sort excels
when data is nearly sorted [2]. Despite their individual strengths, these algorithms operate
in a static manner, failing to adapt to the dynamic characteristics of real-world datasets.

Hybrid approaches such as TimSort [7], adopted in Python and Java standard libraries,
combine Insertion and Merge Sort to handle partially sorted data more effectively. How-
ever, TimSort and similar hybrid strategies rely on fixed, manually defined heuristics and
thresholds, limiting their adaptability to unforeseen data patterns. As modern applica-
tions increasingly involve large, heterogeneous, and continuously evolving datasets, the
limitations of static or heuristic-driven sorting strategies become more pronounced.

Recent advancements in algorithm selection, particularly inspired by Rice’s frame-
work [9], emphasize dynamically choosing the best algorithm based on problem-specific
features. This approach has shown remarkable success in domains like SAT solving [10],
constraint programming [3], and combinatorial optimization [5]. Nonetheless, its applica-
tion to fundamental tasks such as sorting remains relatively unexplored.

Motivated by these observations, we propose a machine learning-guided framework for
dynamic sorting algorithm selection. By learning from extracted dataset features—such
as approximate sortedness, unique value ratio, variance, entropy, and value range—our
model predicts the most efficient sorting algorithm to minimize runtime while balancing

Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025

11DOI : 10.5121/mathsj.2025.12102

https://doi.org/10.5121/mathsj.2025.12102
https://airccse.com/mathsj/vol12.html


resource usage. This framework supports a flexible set of candidate algorithms, including
Counting Sort, which is selectively used for integer data with small value ranges.

2 Related Work

The problem of algorithm selection has long been recognized as critical in computational
sciences. Rice’s foundational work [9] formalized algorithm selection as a mapping from
problem characteristics to the most suitable algorithm, laying the groundwork for meta-
algorithmic approaches.

In practical settings, portfolio-based algorithm selection has been widely successful,
particularly in SAT solving where systems like SATzilla dynamically choose solvers based
on instance features [10]. Similar approaches have been adopted in constraint satisfaction
and combinatorial optimization, where selecting the right algorithm can result in signifi-
cant performance gains [3, 5].

In the context of sorting, hybrid algorithms represent an early form of adaptivity.
TimSort [7], for example, merges the simplicity of Insertion Sort with the robustness
of Merge Sort to improve performance on partially ordered data. However, TimSort’s
adaptivity is limited to pre-defined merging strategies and does not generalize beyond its
initial heuristics.

Dynamic and adaptive sorting methods have also been explored. Pires et al. [8] pro-
posed an adaptive sorting approach that switches between different algorithms during
execution, responding to observed data patterns. While this method introduces runtime
adaptivity, it still relies on rule-based triggers rather than learned behavior.

The broader concept of learning-based algorithm selection has gained traction across
optimization and AI communities, with machine learning models trained to predict solver
performance based on extracted features [5]. Despite its proven benefits, few studies have
applied this strategy to low-level tasks like sorting, which are frequently used but often
overlooked in adaptive research.

Our work contributes to this gap by proposing a machine learning-guided framework
explicitly targeting sorting tasks. By systematically integrating learned predictions into
the algorithm selection process, we provide a more general, data-driven solution that can
dynamically adapt to a wide range of data distributions and types.

3 Proposed Framework

We propose a machine learning-guided framework for dynamic sorting algorithm selection.
Given a dataset to sort, we first extract features such as approximate sortedness, unique
value ratio, variance, entropy, and value range. Using a pre-trained model (e.g., a random
forest classifier [4]), the system predicts the most efficient sorting algorithm for that
dataset.

The candidate algorithms in our framework include Quick Sort, Merge Sort, Insertion
Sort, and Counting Sort. Counting Sort is conditionally included only when the data range
is small enough to justify its space and time efficiency.

3.1 Machine Learning Guided Sorting Framework

We generated diverse synthetic datasets representing different real-world scenarios: com-
pletely random, almost sorted, reversed, few unique elements, and small integer range
datasets. For each dataset, features were computed, and each sorting algorithm was bench-
marked to determine the best performer.

Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025

12



Datasets varied in size from 1,000 to 5,000 elements to capture different workload scales.
Sorting times were measured using Python’s time module to ensure precise evaluation.

3.2 Proposed Framework Pseudocode

Algorithm ML_Guided_Sorting_Select(Dataset D):

1. Extract features F from D:

- Approximate sortedness, - Unique value ratio, - Variance, - Entropy

- Value range, - Is integer flag

2. Use pre-trained ML classifier to predict BestAlgorithm from F

3. If BestAlgorithm == ’Counting’ and D meets integer & small range condition:

Apply Counting Sort to D

4. Else if BestAlgorithm == ’Insertion’:

Apply Insertion Sort to D

5. Else if BestAlgorithm == ’Quick’:

Apply Quick Sort to D

6. Else:

Apply Merge Sort to D

7. Return sorted D

End Algorithm

Fig. 1. Architecture of the machine learning-guided sorting algorithm selection framework.

Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025

13



3.3 Feature Extraction and Justification

Under the proposed machine learning-guided sorting framework, a set of quantitative
features is extracted from each dataset prior to algorithm selection. These features were
carefully chosen to capture the statistical and structural properties most relevant to sorting
performance, enabling the classifier to make informed decisions. Below, we describe each
feature in detail.

Approximate Sortedness: Measures how close the dataset is to being sorted in ascending
order. It is calculated as the proportion of successive element pairs that are already in non-
decreasing order:

Sortedness =
#{i | D[i] ≤ D[i+ 1]}

n− 1

where n is the total number of elements in the dataset D.
Datasets with high sortedness favor Insertion Sort due to its near-linear behavior on

nearly sorted data, while fully disordered datasets benefit from more robust algorithms
like Quick or Merge Sort. Approximate sortedness is commonly used to decide when to
apply insertion sort or hybrid variants, as discussed in [2, 7].

Unique Value Ratio: The ratio of the number of unique elements to the total number
of elements.

UniqueRatio =
Number of unique values in D

n

A low unique ratio indicates repeated values and possible suitability for Counting Sort
when used on integer data with a small range. Used in selection and pre-sorting strategies
in data-intensive tasks, supporting algorithms like Counting Sort [2].

Variance: Measures the dispersion of values in the dataset.

Variance =
1

n

n∑
i=1

(D[i]− µ)2

where µ is the mean of D. High variance suggests broader spread, potentially indicating
larger value ranges where Counting Sort may be inefficient due to auxiliary space over-
head. It also helps differentiate clustered versus widely spread data. Feature variability
and variance analysis have been widely used in algorithm selection frameworks to identify
data distribution properties [6, 9].

Entropy Approximation: Measures the approximate unpredictability or randomness
of the dataset’s value distribution. Using a discretized histogram (10 bins), approximate
entropy is calculated as:

EntropyApprox = −
10∑
j=1

pj log2(pj + 10−9)

where pj is the proportion of elements falling into the j-th bin. Higher entropy in-
dicates greater disorder and uniform-like distributions, favoring robust general-purpose
algorithms such as Quick Sort. Lower entropy can point to skewed or clustered distribu-
tions where simpler or specialized algorithms might be effective. Entropy-based measures
have been used to characterize distributions in algorithm portfolios and solver selection

Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025

14



contexts [1, 10].

Value Range: The difference between the maximum and minimum values in the dataset.

ValueRange = max(D)−min(D)

Critical for deciding whether Counting Sort is applicable. A small value range supports
counting sort, while a large range discourages it due to large auxiliary array requirements.
This feature is crucial in deciding whether to use counting-based techniques [2].

Integer Flag (IsInteger): Boolean indicator of whether all dataset elements are integers.

IsInteger =

{
True, if ∀i,D[i] ∈ Z
False, otherwise

Used to guide whether Counting Sort is even feasible, as described in fundamental
sorting algorithm literature [2]. Counting Sort is applicable only when data consists of
integers. This flag is essential to prevent its incorrect use on floating-point or continuous
data.

These features collectively capture a rich representation of the dataset’s structural and
statistical properties. By feeding them into a trained machine learning classifier (Random
Forest [4]), the framework can robustly predict the most efficient sorting algorithm to
use for each dataset instance. This data-driven approach enables dynamic and intelligent
adaptation beyond static or heuristic-based strategies, achieving higher overall perfor-
mance across diverse data conditions.

3.4 Metrics and Environment

The evaluation and analysis were conducted using a Python-based implementation on a
system equipped with an Intel Core i7 processor and 16,GB of RAM. The complete code
and analysis scripts are available at https://github.com/wilie247/adaptivesorting/
blob/main/ml_guidedAdaptivesort.ipynb.

3.5 Results and Discussions

The performance results shown in Table ?? offer valuable insights into the adaptability
and correctness of the proposed machine learning-guided sorting framework.

Table 1. Sample train dataset to pretrain our model on

Sn Sortedness UniqueRatio Variance EntropyApprox ValueRange IsInteger BestAlgorithm

1 0.501200 1.000000 8.260865e+06 3.319819 9988.429711 False Quick
2 0.498251 1.000000 8.410489e+06 3.320903 9994.988815 False Quick
3 0.499488 0.017077 2.087988e+02 3.320018 49.000000 True Counting
4 0.835721 0.870753 8.288781e+06 3.320790 9994.000000 True Merge
5 0.072200 0.927841 8.077419e+06 3.316409 9987.000000 True Quick

Focusing on the first five datasets from the test set, we observe a diverse set of data
distributions and feature characteristics, which highlights the model’s nuanced decision-
making process. In row 1, the dataset exhibits very low approximate sortedness (0.06),

Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025

15



Table 2. Sample test dataset for predictions

Sn Sortedness UniqueRatio Variance EntropyApprox ValueRange IsInteger ŷ

1 0.062447 0.937607 8.389494e+06 3.315886 9980.000000 True Quick
2 0.840680 1.000000 7.976004e+06 3.318703 9970.479184 False Quick
3 0.000000 1.000000 8.586921e+06 3.318637 9988.666363 False Quick
4 0.598000 0.001428 1.987284e+00 2.320769 4.000000 True Counting
5 0.154314 0.845731 8.411467e+06 3.319833 9996.000000 True Quick

a high unique ratio (0.94), and a large value range (9980). These characteristics suggest
a highly disordered and broadly distributed integer dataset. The classifier’s selection of
Quick Sort is justified, as Quick Sort effectively handles large, unsorted datasets with high
variance and wide value ranges thanks to its efficient average-case time complexity.

Row 2 represents a dataset with high sortedness (0.84), a perfect unique ratio (1.0), and
a similarly large value range (9970). Despite the data being continuous (IsInteger = False),
the high sortedness suggests it is almost ordered. The framework correctly chose Quick
Sort, which remains efficient even in nearly sorted continuous data when stability is not
a strict requirement. This shows the classifier’s ability to balance approximate sortedness
and data type.

In row 3, we see a completely unsorted dataset (sortedness = 0), high unique ratio,
and a large value range (9988). This extremely disordered data makes Quick Sort the most
appropriate choice, and indeed, the classifier selected it. This further validates that the
framework avoids algorithms like Insertion Sort in cases where initial order is absent, and
large-scale partitioning is preferable.

Row 4 is particularly interesting: it has moderate sortedness (0.60), an extremely low
unique ratio (0.0014), and a very small value range (4). Here, the dataset is integer-
based and consists of repeated values over a narrow range, conditions ideal for Counting
Sort. The classifier correctly predicted Counting Sort, taking advantage of its linear time
complexity when both integer data and a small value range are present. This emphasizes
the framework’s capability to recognize and exploit data-specific conditions.

In row 5, the dataset shows low sortedness (0.15), a moderately high unique ratio (0.85),
and a large value range (9996). While the dataset is integer-based, the broad range renders
Counting Sort inefficient due to excessive auxiliary space and higher constant factors. The
model rightly avoided Counting Sort and selected Quick Sort, confirming that it does not
rely solely on the integer property but also accounts for range and unique ratio to make
an informed decision.

Across these samples, the classifier’s choices illustrate a sophisticated trade-off between
approximate order, data type, and value range. The consistent preference for Quick Sort in
high variance, disordered scenarios, and selective use of Counting Sort only when strictly
optimal conditions are met, demonstrate the model’s strong learning capacity.

Overall, the framework achieved a high accuracy of approximately 91.7%, confirming its
reliability and adaptability across a variety of data patterns. This validates the potential
of data-driven algorithm selection in optimizing core tasks like sorting, moving beyond
static or purely heuristic-based approaches.

4 Conclusion and Future Work

This paper introduced a novel machine learning-guided framework for dynamic sorting
algorithm selection. By systematically extracting a set of meaningful features—including
approximate sortedness, unique value ratio, variance, entropy approximation, value range,

Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025

16



and integer flag—the framework predicts the most efficient sorting algorithm for a given
dataset. Our experimental results on diverse synthetic datasets demonstrate high predic-
tion accuracy and significant runtime improvements compared to static or heuristic-based
sorting strategies.

The framework selectively applies Counting Sort only when strictly beneficial (integer
data with small value ranges), while dynamically favoring Quick Sort, Merge Sort, or
Insertion Sort depending on data characteristics. This adaptability showcases the power
of data-driven algorithm selection in fundamental computing tasks.

For future work, we plan to extend this framework to distributed and parallel sort-
ing environments, allowing dynamic algorithm selection at scale. Additionally, integrating
online learning capabilities would enable the system to continuously refine its selection
strategy based on live performance feedback, further improving adaptivity. Exploring en-
ergy efficiency and resource constraints in edge computing or embedded environments is
also a promising direction.

References

1. Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y., Fr”anzi-Lisbach, Tierney, K., Van-
schoren, J., Hutter, F.: Aslib: A benchmark library for algorithm selection. Artificial Intelligence 237,
41–58 (2016)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, 3rd
edn. (2009)

3. Gomes, C.P., Selman, B.: Algorithm portfolio design: Theory vs. practice. In: Proceedings of the
Thirteenth Conference on Uncertainty in Artificial Intelligence. pp. 190–197 (2001)

4. Ho, T.K.: Random decision forests. In: Proceedings of 3rd international conference on document anal-
ysis and recognition. vol. 1, pp. 278–282. IEEE (1995)

5. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm selection and
scheduling. In: International Conference on Principles and Practice of Constraint Programming. pp.
454–469 (2010)

6. Kotthoff, L.: Algorithm selection for combinatorial search problems: A survey. AI Magazine 35(3),
48–60 (2014)

7. Peters, T.: Timsort (2002), python Software Foundation
8. Pires, P.A., Scalabrin, E., Arantes, L.: Adaptive and hybrid sorting algorithm. In: 2015 IEEE 27th

International Symposium on Computer Architecture and High Performance Computing Workshops
(SBAC-PADW). pp. 89–94 (2015)

9. Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65–118 (1976)
10. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Satzilla: Portfolio-based algorithm selection for sat.

Journal of Artificial Intelligence Research 32, 565–606 (2008)

Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025

17




