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ABSTRACT 
 

This word discusses approximate solutions of linear parabolic equations with initial-boundary 
conditions. The primary focus is on methods that effectively find such solutions by employing a 

moving finite difference analog of the differential equation. This approach allows us to formulate 

an approximate analytical solution, significantly simplifying the computation process. By 

transitioning from the differential equation to an algebraic equation, we obtain a single equation, 

the solution of which represents an approximate analytical solution to the original problem. 

However, to achieve higher accuracy in this solution, we apply additional moving nodes, which 

enhances the results. By using multipoint moving nodes, we can form a system of algebraic 

equations, the solution of which provides us with an improved analytical solution. The article also 

presents numerical experiments that confirm the effectiveness of the proposed method and its 

advantages over traditional approaches. 
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1. INTRODUCTION 
 

This article discusses approximate solutions of linear parabolic equations with initial-boundary 

conditions. The primary focus is on methods that effectively find such solutions by employing a 
moving finite difference analog of the differential equation. This approach allows us to formulate 

an approximate analytical solution, significantly simplifying the computation process. 

 
By transitioning from the differential equation to an algebraic equation, we obtain a single 

equation, the solution of which represents an approximate analytical solution to the original 

problem. However, to achieve higher accuracy in this solution, we apply additional moving 
nodes, which enhances the results. 

 

By using multipoint moving nodes, we can form a system of algebraic equations, the solution of 

which provides us with an improved analytical solution. The article also presents numerical 
experiments that confirm the effectiveness of the proposed method and its advantages over 

traditional approaches. 

 
Many phenomena and processes in nature are described using differential equations. These 

equations are a powerful tool for modeling various physical, chemical, and engineering 

processes. For example, one of the most common applications is heat conduction in solid bodies. 

In this case, differential equations help describe how temperature is distributed within a material 
over time, taking into account factors such as thermal conductivity and initial conditions. 
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Additionally, mass transfer processes in chemical technology can also be modeled using 
differential equations. Here, it is important to consider how different components interact with 

each other and how they move through space, which requires solving initial-boundary value 

problems of parabolic type. 

 
Another example is the movement of liquids, where it is necessary to account for the influence of 

temperature on the dynamics of flow. In such cases, differential equations allow us to describe 

how temperature affects the viscosity of the liquid and, consequently, its motion. 
 

Thus, initial-boundary value problems of parabolic type play a crucial role in modeling and 

analyzing these complex processes, providing a deeper understanding of the phenomena 
occurring in nature[1-3].    

 

Analytical methods do not possess the necessary universality for solving such problems. While 

analytical approaches can be effective in certain cases, they often face limitations when dealing 
with complex systems or equations for which it is impossible to find an exact solution. 

 

In such situations, alternative methods become more universal. For example, projection 
methods allow for transforming problems into more manageable forms, facilitating their solution. 

These methods are often used in numerical calculations and approximate solutions. 

 
Variational methods also represent a powerful tool based on the search for extrema of 

functionals. They find wide application in various fields, including physics and optimization, and 

enable the finding of approximate solutions for complex problems. 

 
Another important approach is the method of small parameters, which is used to simplify 

equations when one of the parameters of the system is significantly smaller than the others. This 

allows for obtaining simpler and more manageable solutions while preserving the essential 
characteristics of the system. 

 

Operational methods provide another level of universality, allowing for the solution of 

differential equations through transformations such as the Laplace transform. These methods are 
particularly useful for analyzing systems in the frequency domain. 

 

Finally, various iterative methods offer the possibility of approximating solutions to complex 
problems, starting from simple initial assumptions and gradually improving them. These methods 

are frequently used in numerical calculations and modeling, enabling the finding of solutions 

when analytical approaches are ineffective. 
 

Thus, the use of more universal methods, such as projection, variational, small parameter 

methods, operational, and iterative methods, significantly expands the capabilities for solving 

complex problems and allows for obtaining more accurate and reliable results[4,5,6,7]. 
 

he method of moving nodes is classified as a universal method. In work [8], an analytical 

expression for the solution of two-point boundary value problems of convection-diffusion with 
constant coefficients was obtained using multi-point moving difference schemes. 

 

Work [9] discusses the application of the moving nodes method for solving two-point boundary 
value problems based on the control volume method [10], which is known in Russian literature as 

the integral-interpolatory method [11]. 
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Thus, the method of moving nodes demonstrates its universality and effectiveness in various 
fields, making it a valuable tool for solving complex problems. 

 

The application of the moving nodes method in its one-point variant to partial differential 

equations is discussed in work [12]. 
 

The application of the moving nodes method for parabolic equations in various aspects of the 

one-point variant is presented in work [13]. It demonstrates the possibility of improving the 
solution through partial approximation of differential operators based on the direct method 

approach. The goal of this research is to develop a multi-point variant of the moving nodes 

method for parabolic-type equations. 
 

2. STATEMENT OF THE PROBLEM 
 

Let's consider the boundary value problem  

 
2

2
( , )

u u
f x t

t x


 
 

 
                                              (1) 

 

with initial 

( ,0) ( )u x x        (2) 

 

and boundary conditions 

 

0(0, ) ( ), ( , ) ( ).bu t u t u b t u t      (3) 

 

In (1) – (3)  ( , )u x t isthe unknown function, 0( , ), ( ), ( )f x t x u t and  ( )bu t the given functions, 

Equation (1) is considered in the region 0 , 0 ,x b t T      ( 0), 
 

 

There are various methods for solving the problem: analytical and numerical. It is assumed that 

the initial and boundary conditions are such that the solution to the problem exists and is unique.  
To solve the problem, an approximate method is proposed here based on a multi-point version of 

the moving node method, which allows obtaining a refined approximate solution to the problem. 

 

3. SOLUTION METHOD AND DISCUSSION 
 

As already mentioned above, dedicated to the solution of a parabolic equation, a single movable 

node is used. To improve the solution in the case of two-point boundary value problems, multi-

point movable nodes were used in works [8,9]. 
 

The use of multi-point movable nodes for a parabolic equation faces certain difficulties 

associated with the loudness of mathematical expressions. In this regard, we use the capabilities 
of symbolic mathematics packages. 

 

In the case of two-point boundary value problems [8,9], movable nodes were used: single-point 

1 {0, , },x b  , three-point 3 {0, / 2, , ( ) / 2, }x x b x b   , etc. In the given templates, 

nodes 0 and b coincide with the boundary point of the problem, and x is a movable node. Index in 

  means the number of movable nodes. 
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In the work [13] in  one movable node is used 
11 1 1,x t    where 

1 {0, , },x x b 

3 {0, / 3, 2 / 3, }.t t t t    Now the index in   denotes the number of movable nodes by 

variable, for example, 
3x indicates that three movable nodes are used by variable x. We 

introduce additional movable nodes: 
 

3 {0, / 2, , ( ) / 2, };x x x b x b   2 {0, / 2, };t t t  3 {0, / 3, 2 / 3, }.t t t t   

 

Let us first consider the approximation of equation (1) with one movable node, i.e. in 11 with an 

implicit scheme: 
 

( , ) ( ,0) ( , ) ( , ) ( , ) (0, )
( , )

2

U x t U x b U b t U x t U x t U t
f x t

t b x x


   
    

  (4) 

 
In the equation U(x,t) is an approximate value of the unknown function at the points (x,t). Using 

the boundary and initial conditions, we have, 

 

0( ,0) ( ,0) ( ), (0, ) (0, ) ( ), ( , ) ( , ) ( )bU x u x x U t u t u t U b t u b t u t       

 

Solving equations (4) taking into account the boundary and initial conditions, we obtain 

 

02 [ ( ) ( )( )]( )
( , ) ( )

2 ( ) (2 ( ))

( ) ( , )

( ) 2

bt u t x u t b xx b x
U x t x

t x b x b t x b x

x b x tf x t

x b x t




 



 
  

   



 

   (5) 

 
(5) is an approximate analytical solution to problem (1)-(3). 

 

The approximate solution satisfies conditions (2) and (3). 
 

To improve the solution, we add movable nodes. When approximating by template, we obtain 

three types of movable nodes; (x/2,t), (x,t) and ((b+x)/2,t). For each movable node, we use three 

implicit schemes of type (4). From this system of equations, we determine the solution, which has 
the form; 

2 1

( ) 4 ( ) (( ) / 2) ( )
( , )

2 (2 ) 2 2

M x tM b x b x x a
U x t

t M b t M M M

  

 

    
     

   
 

2

0

2 1

( ) ( )2(2 )
:

(2 ) ( )(2 ) (2 )

bu t u tt M

b t M b x t M x t M



  

 
   

     
   (6) 

2

2 1

2(2 ) 1 1
1

( )(2 ) ( )

t M

b a t M b x M xM





   
   

     
 

 

In (6), the notations are introduced 

 
2 2

1 2( ) / 4, 2 ( ) / 2, 2 ( ) / 2. ,M x b x M t x a M t b x          
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Formula (6) is derived for ( , ) 0f x t  . 

 

Now, let us consider improving the solution by adding alternating nodes with respect to the 

variable t. For brevity, we introduce the notations; 
 

0
1 2

3 1

2 [ ( ) ( )( )]( )
( ) 2 ( ), ( ) , ( ) ,

( ) ( )

( ) ( , ).

bt u t x u t b xx b x
P t t x b x S t S t

P t P t

S S t t f x t




 
    

 

 

 

Based on these notations, (5) can be written as follows 

 

1 2 3( , ) ( ) ( ) ( ) ( ).U x t S t x S t S t         (7) 

 

Note that the variable x is not explicitly specified in the expressions 1 2 3( ), ( ), ( ), ( )P t S t S t S t ; 

there is no need for this.  

 

Let us consider the pattern 12 1 2x t    ,  i.e. movable nodes; (x,t/2) and (x,t). Let us write 

formula (7) for these nodes. 

 

For node (x,t/2) 
 

1 2 3( , / 2) ( / 2) ( ) ( / 2) ( / 2).U x t S t x S t S t   ,    (8 ) 

 

and for node (x,t) , 
 

1 2 3( , ) ( ) ( , / 2) ( ) ( ).U x t S t U x t S t S t       (9 ) 

 

Substituting expression (8) into (9), we obtain 

 

1 1 2 3 2 3( , ) ( )[ ( / 2) ( ) ( / 2) ( / 2)] ( ) ( ).U x t S t S t x S t S t S t S t        (10) 

 

If we use three-point moving nodes by variable t, we have 

 

1 1 1 2 3 2 3

2 3

( , ) ( ){ (2 / 3)[ ( / 3) ( ) ( / 3) ( / 3)] (2 / 3) (2 / 3)}

( ) ( ).

U x t S t S t S t x S t S t S t S t

S t S t

     


 (11) 

 

We can increase the number of moving nodes by both variables. Due to the difficulty of 

implementing this procedure, we will present this routine work to symbolic mathematics 
packages, in particular, we will use Maple tools. 

 

Note that for convenience, the approach was presented for a simple parabolic equation (1). The 

sequence of presentation and the method for obtaining an approximate solution do not change if, 
instead of equation (1), we consider a more general form. 

 

4. NUMERICAL EXPERIMENTS 
 
We will study several examples in which the exact solution is known. 
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Problem 1. Consider problem (4.1)-(4.3) with the following input parameters: 1,  1,b   

1,T  ( , ) ( )(1 ) ,f x t exp x t x   
0( ) 0, ( ) , ( ) / .bx u t t u t t e t      

Exact solution to the problem 

 

( , ) ( ) .u x t exp x t tx    

 
Fig.1. Exact solution for  problem 1 

 

 
Fig. 2 Approximate solution problem 1 

 

 
 

Fig.3 Difference solution; u(x,t)-U(x,t) with one movable node 
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Fig.4  Difference solution; u(x,t)-U(x,t) with three movable nodes along x 

 

 
Fig. 1, 2  shows a comparison of the exact and approximate solutions obtained using one movable 

node. It is very difficult to distinguish visually, so Fig.3 shows the difference between the exact 

and approximate solutions, showing a good result. When used with three movable nodes along 
the variable x, the result improves (the difference between the solution is shown in Fig. 4 

 

Problem 2. Let the parameters of problem (1)-(3) have the form: 1,  ,b  1,T   

1,T  ( , ) 0,f x t 
0( ) sin / , ( ) 0, ( ) 1.bx x x u t u t      

 

Exact solution of the problem 
 

( , ) ( )sin( ) / .u x t exp t x x   
 

 

 
 

Fig.5. Exact solution problem 2 
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Fig.6. Approximate solution with one movable node for problem 2 

 

Fig. 5-8 reflects a comparative analysis of the approximate and exact solutions for problem 2. 

The exact solution of problem 2 is shown in Fig. 5 and the approximate solution with one 
movable node is shown in Fig. 6. Comparison of Fig5 and Fig. 6 shows qualitative agreement 

between the obtained solutions. The difference between the exact and approximate solutions with 

a single-point moving node is shown in Fig. 7. To refine the approximate solution, additional 

alternating nodes were used. When using three moving nodes along the x variable and along the t 
variable, the difference between the exact and approximate solutions was reduced by two times. 

compared to one moving node (Fig. 8). 

 

 
 

Fig.7 Difference solution; u(x,t)-U(x,t) with one movable node for problem 2 

 

 
 

Fig.8. Difference solution; u(x,t)-U(x,t) with three movable nodes along x and along t for problem 2 
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Problem 3. Now consider problem (1)-(3) with the input parameters: 1,  1,b  1,T   

( , ) 0,f x t 
0( ) sin( ), ( ) 0, ( ) 0.bx x u t u t     

 
Exact solution to the problem 

 
2( , ) ( )sin( ).u x t exp t x    

 
The solution to this problem with one moving node is; 

 

(1 )sin( )
( , ) .

2 (1 )

x x x
U x t

t x x




 
 

 

In this problem, one can also find a qualitative coincidence between the exact and approximate 

solutions with one moving node. To refine it, we increase the number of moving nodes. 
 

 
Fig.9 Exact solution for problem 3 

 

 
 

Fig.10. Approximate solution with three movable nodes in x and t for problem 3 

 

Figures 9 and 10 show the exact and approximate solutions to problem 3. The approximate 

solution was obtained with three moving nodes in both variables, which shows good agreement 
between the approximate solution and the exact solution. 

 

Fig. 11-13 shows graphs showing errors (the difference between the exact and approximate 
solutions) depending on the number of movable nodes. 
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Fig.11. Error at 11 for problem 3. 

 

 

 
 

Fig.12. Error at 32 for problem 3. 

 

 

 
 

Fig.13. Error at 33  for problem 3. 
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Increasing the number of movable nodes will lead to a decrease in the error of the solutions 
obtained. In this case, the decrease in error, in this problem, is more noticeable with an increase 

in the number of movable nodes in the variable t. 

 

5. CONCLUSIONS 
 
The presented analysis of the initial boundary value problems for parabolic equations shows that 

the proposed solution method allows for its application in finding approximate solutions. This 

method, based on moving nodes, enables adaptation to changing conditions of the problem and 
improves the accuracy of calculations. Increasing the number of moving nodes contributes to a 

more detailed approximation of the solution, which, in turn, leads to the refinement of the 

obtained results. Thus, the use of a greater number of nodes not only enhances accuracy but also 
expands the applicability of this method in various scientific and engineering tasks. Note that in 

this paper, the method of multipoint moving nodes is applied to a simple parabolic equation. 

Given the versatility of multipoint moving nodes, this solution technique can also be effectively 

applied to parabolic equations that include convection-reaction terms and Neumann-type 
boundary conditions 
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