A Study on Intuitionistic Multi-Anti Fuzzy Subgroups

R.Muthuraj¹, S.Balamurugan²

¹PG and Research Department of Mathematics,H.H. The Rajah's College, Pudukkotta622 001,Tamilnadu, India.
²Department of Mathematics,Velammal College of Engineering & Technology, Madurai-625 009,Tamilnadu, India.

ABSTRACT

For any intuitionistic multi-fuzzy set $A = \{ < x , \mu_A(x) , v_A(x) > : x \in X \}$ of an universe set X, we study the set $[A]_{(\alpha,\beta)}$ called the (α, β) -lower cut of A. It is the crisp multi-set $\{ x \in X : \mu_i(x) \le \alpha_i , v_i(x) \ge \beta_i , \forall i \}$ of X. In this paper, an attempt has been made to study some algebraic structure of intuitionistic multi-anti fuzzy subgroups and their properties with the help of their (α, β) -lower cut sets.

Keywords

Intuitionistic fuzzy set (IFS), Intuitionistic multi-fuzzy set (IMFS), Intuitionistic multi-anti fuzzy subgroup (IMAFSG), Intuitionistic multi-anti fuzzy normal subgroup (IMAFNSG), (,)–lower cut, Homomorphism.

Mathematics Subject Classification 20N25, 03E72, 08A72, 03F55, 06F35, 03G25, 08A05, 08A30.

1. INTRODUCTION

After the introduction of the concept of fuzzy set by Zadeh [14] several researches were conducted on the generalization of the notion of fuzzy set. The idea of Intuitionistic fuzzy set was given by Krassimir.T.Atanassov [1]. An Intuitionistic Fuzzy set is characterized by two functions expressing the degree of membership (belongingness) and the degree of non-membership (non-belongingness) of elements of the universe to the IFS. Among the various notions of higher-order fuzzy sets, Intuitionistic Fuzzy sets proposed by Atanassov provide a flexible framework to explain uncertainity and vagueness. An element of a multi-fuzzy set can occur more than once with possibly the same or different membership values. In this paper we study Intuitionistic multi-anti fuzzy subgroup with the help of some properties of their (α , β)–lower cut sets. This paper is an attempt to combine the two concepts: Intuitionistic Fuzzy sets and Intuitionistic Multi-fuzzy sets and Intuitionistic Multi-Anti fuzzy subgroups.

2. PRELIMINARIES

In this section, we site the fundamental definitions that will be used in the sequel.

2.1 Definition [14]

Let X be a non-empty set. Then a **fuzzy set** $\mu : X \rightarrow [0,1]$.

2.2 Definition [9]

Let X be a non-empty set. A **multi-fuzzy set** A of X is defined as $A = \{ \langle x, \mu_A(x) \rangle : x \in X \}$ where $\mu_A = (\mu_1, \mu_2, ..., \mu_k)$, that is, $\mu_A(x) = (\mu_1(x), \mu_2(x), ..., \mu_k(x))$ and $\mu_i : X \to [0,1]$, $\forall i=1,2,...,k$. Here k is the finite dimension of A. Also note that, for all i, $\mu_i(x)$ is a decreasingly ordered sequence of elements. That is, $\mu_1(x) \ge \mu_2(x) \ge ... \ge \mu_k(x), \forall x \in X$.

2.3 Definition [1]

Let X be a non-empty set. An **Intuitionistic Fuzzy Set (IFS)** A of X is an object of the form $A = \{ < x, \mu(x), \nu(x) > : x \in X \}$, where $\mu : X \to [0, 1]$ and $\nu : X \to [0, 1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ respectively with $0 \le \mu(x) + \nu(x) \le 1$, $\forall x \in X$.

2.4 Remark [1]

- (i) Every fuzzy set A on a non-empty set X is obviously an intuitionistic fuzzy set having the form $A = \{ < x, \mu(x), 1-\mu(x) > : x \in X \}.$
- (ii) In the definition 2.3, When $\mu(x) + \nu(x) = 1$, that is, when $\nu(x) = 1 \mu(x) = \mu^{c}(x)$, A is called fuzzy set.

2.5 Definition [13]

Let $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$ where $\mu_A(x) = (\mu_1(x), \mu_2(x), \dots, \mu_k(x))$ and $\nu_A(x) = (\nu_1(x), \nu_2(x), \dots, \nu_k(x))$ such that $0 \le \mu_i(x) + \nu_i(x) \le 1$, for all i, $\forall x \in X$. Here, $\mu_1(x) \ge \mu_2(x) \ge \dots \ge \mu_k(x)$, $\forall x \in X$. That is, μ_i 's are decreasingly ordered sequence. That is, $0 \le \mu_i(x) + \nu_i(x) \le 1, \forall x \in X$, for i=1, 2, ..., k. Then the set A is said to be an **Intuitionistic Multi-Fuzzy Set (IMFS)** with dimension k of X.

2.6 Remark [13]

Note that since we arrange the membership sequence in decreasing order, the corresponding non-membership sequence may not be in decreasing or increasing order.

2.7 Definition [13]

Let $A = \{ < x , \mu_A(x), \nu_A(x) > : x \in X \}$ and $B = \{ < x , \mu_B(x), \nu_B(x) > : x \in X \}$ be any two IMFS's having the same dimension k of X. Then

(i) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$.

- (ii) A = B if and only if $\mu_A(x) = \mu_B(x)$ and $\nu_A(x) = \nu_B(x)$ for all $x \in X$.
- (iii) $\neg A = \{ < x , v_A(x), \mu_A(x) > : x \in X \}$

$$\begin{array}{ll} (iv) & A \cap B = \{ < x \ , \ (\mu_{A \cap B})(x), \ (\nu_{A \cap B})(x) > : x \in X \ \}, \ where \\ & (\mu_{A \cap B})(x) = \min\{ \ \mu_A(x), \ \mu_B(x) \ \} = (\ \min\{\mu_{iA}(x), \ \mu_{iB}(x) \ \} \)_{i=1}^k \quad \text{ and } \\ & (\nu_{A \cap B})(x) = \max\{ \ \nu_A(x), \ \nu_B(x) \ \} = (\ \max\{\nu_{iA}(x), \ \nu_{iB}(x) \ \} \)_{i=1}^k \\ (v) & A \cup B = \{ < x \ , \ (\mu_{A \cup B})(x), \ (\nu_{A \cup B})(x) > : x \in X \ \}, \ where \\ & (\mu_{A \cup B})(x) = \max\{ \ \mu_A(x), \ \mu_B(x) \ \} = (\ \max\{\mu_{iA}(x), \ \mu_{iB}(x) \ \} \)_{i=1}^k \quad \text{ and } \\ \end{array}$$

$$(v_{A\cup B})(x) = \min\{v_A(x), v_B(x)\} = (\min\{v_{iA}(x), v_{iB}(x)\})_{i=1}^k$$

Here { $\mu_{iA}(x)$, $\mu_{iB}(x)$ } represents the corresponding i^{th} position membership values of A and B respectively. Also { $\nu_{iA}(x)$, $\nu_{iB}(x)$ } represents the corresponding i^{th} position non-membership values of A and B respectively.

2.8 Theorem [13]

For any three IMFS's A, B and C, we have :

1. Commutative Law

 $A \cup B = B \cup A$ $A \cap B = B \cap A$

2. Idempotent Law

 $A \cup A = A$ $A \cap A = A$

3. De Morgan's Laws

 $\neg (A \cup B) = (\neg A \cap \neg B)$ $\neg (A \cap B) = (\neg A \cup \neg B)$

4. Associative Law

 $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$

5. Distributive Law

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

2.9 Definition

Let $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$ be an IMFS and let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k) \in [0,1]^k$ and $\beta = (\beta_1, \beta_2, \dots, \beta_k) \in [0,1]^k$, where each α_i , $\beta_i \in [0,1]$ with $0 \le \alpha_i + \beta_i \le 1, \forall i$. Then (α, β) -lower cut of A is the set of all x such that $\mu_i(x) \le \alpha_i$ with the corresponding $\nu_i(x) \ge \beta_i$, $\forall i$ and is denoted by $[A]_{(\alpha, \beta)}$. Clearly it is a crisp multi-set.

2.10 Definition

Let $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$ be an IMFS and let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k) \in [0,1]^k$ and $\beta = (\alpha_1, \alpha_2, \dots, \alpha_k) \in [0,1]^k$

 $(\beta_1,\beta_2,\ldots,\beta_k) \in [0,1]^k$, where each α_i , $\beta_i \in [0,1]$ with $0 \le \alpha_i + \beta_i \le 1, \forall i$. Then **strong** (α, β) -lower **cut** of A is the set of all x such that $\mu_i(x) < \alpha_i$ with the corresponding $\nu_i(x) > \beta_i$, $\forall i$ and is denoted by $[A]_{(\alpha,\beta)^*}$. Clearly it is also a crisp multi-set.

The following Theorem is an immediate consequence of the above definitions.

2.11 Theorem [13]

Let A and B are any two IMFS's of dimension k drawn from a set X. Then $A \subseteq B$ if and only if $[B]_{(\alpha,\beta)} \subseteq [A]_{(\alpha,\beta)}$ for every $\alpha, \beta \in [0,1]^k$ with $0 \le \alpha_i + \beta_i \le 1$ for all i.

2.12 Definition

An intuitionistic multi-fuzzy set (In short IMFS) $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in G \}$ of a group G is said to be an **intuitionistic multi-anti fuzzy subgroup** of G (In short IMAFSG) if it satisfies the following : For all $x, y \in G$,

- (i) $\mu_A(xy) \le \max \{\mu_A(x), \mu_A(y)\}$
- (ii) $\mu_A(x^{-1}) = \mu_A(x)$
- (iii) $v_A(xy) \ge \min \{v_A(x), v_A(y)\}$
- (iv) $v_A(x^{-1}) = v_A(x)$

2.13 Definition

An intuitionistic multi-fuzzy set (In short IMFS) A = { $\langle x, \mu_A(x), \nu_A(x) \rangle : x \in G$ } of a group G is said to be an **intuitionistic multi-anti fuzzy subgroup** of G (In short IMAFSG) if it satisfies :

(i)
$$\mu_A(xy^{-1}) \le \max\{\mu_A(x), \mu_A(y)\}\$$
 and
(ii) $\nu_A(xy^{-1}) \ge \min\{\nu_A(x), \nu_A(y)\}\$, $\forall x, y \in G$

2.13.1 Remark

- (i) If A is an IFS of a group G, then we can not say about the complement of A, because it is not an IFS of G.
- (ii) If A is an IAFSG of a group G, then A^c is need not be an IFS of G.
- (iii) A is an IMAFSG of a group G \Leftrightarrow each IFS { < x, $\mu_{iA}(x)$, $\nu_{iA}(x) : x \in G >$ }_{i=1}^k is an IAFSG of G.
- (iv) If A is an IMAFSG of a group G, then in general, we can not say A^c is an IMFSG of the group G.

2.14 Definition

An IMAFSG A = { $\langle x, \mu_A(x), \nu_A(x) \rangle : x \in G$ } of a group G is said to be an **intuitionistic multianti fuzzy normal subgroup** (In short IMAFNSG) of G if it satisfies :

(i)
$$\mu_A(xy) = \mu_A(yx)$$
 and
(ii) $\nu_A(xy) = \nu_A(yx)$, for all $x, y \in G$

2.15 Theorem

An intuitionistic multi-anti fuzzy subgroup (IMAFSG) A of a group G is said to be normal if it satisfies :

(i) $\mu_A(g^{-1}xg) = \mu_A(x)$ and (ii) $\nu_A(g^{-1}xg) = \nu_A(x)$, for all $x \in A$ and $g \in G$ **Proof** Let $x \in A$ and $g \in G$ be any element. Then $\mu_A(g^{-1}xg) = \mu_A(g^{-1}(xg)) = \mu_A((xg)g^{-1})$, since A is normal. $= \mu_A(x(gg^{-1})) = \mu_A(xe) = \mu_A(x)$. Hence the proof (i). Now, $\nu_A(g^{-1}xg) = \nu_A(g^{-1}(xg)) = \nu_A((xg)g^{-1})$, since A is normal. $= \nu_A(x(gg^{-1})) = \nu_A(xe) = \nu_A(x)$. Hence the proof (ii).

2.16 Definition

Let (G, .) be a groupoid and A, B be any two IMFS's having same dimension k of G. Then the **product** of A and B is denoted by $A \circ B$ and it is defined as :

 $\forall x \in G, A \circ B(x) = (\mu_{A \circ B}(x), \nu_{A \circ B}(x))$ where

$$\mu_{A\circ B}(x) = \begin{cases} \max \left[\min\{\mu_A(y), \mu_B(z)\} : yz=x, \forall y, z \in G\right] \\ 0_k=(0, 0, \dots, k \text{ times}), \text{ if } x \text{ is not expressible as } x=yz \\ \min \left[\max\{\nu_A(y), \nu_B(z)\} : yz=x, \forall y, z \in G\right] \end{cases}$$
 and

$$v_{A \circ B}(x) = \begin{cases} 1_{k} = (1, 1, ..., k \text{ times}), \text{ if } x \text{ is not expressible as } x = yz \end{cases}$$

That is,
$$\forall x \in G$$
,

$$A \circ B(x) = \begin{cases}
(\max[\min\{\mu_A(y), \mu_B(z)\}: yz=x, \forall y, z \in G], \min[\max\{\nu_A(y), \nu_B(z)\}: yz=x, \forall y, z \in G], \\
(0_k, 1_k), \text{ if } x \text{ is not expressible as } x=yz
\end{cases}$$

That is, $\forall x \in G$,

$$A \circ B(x) = \begin{cases} \max[\min\{\mu_{iA}(y), \mu_{iB}(z)\}: yz=x, \forall y, z \in G], \min[\max\{\nu_{iA}(y), \nu_{iB}(z)\}: yz=x, \forall y, z \in G]\}_{i=1}^{k} \\ 0, 1)_{k} \text{, if } x \text{ is not expressible as } x=yz \text{ where } (0, 1)_{k} = ((0, 1), (0, 1), \dots, k \text{ times}) \end{cases}$$

2.17 Definition

Let X and Y be any two non-empty sets and $f: X \to Y$ be a mapping. Let A and B be any two IMFS's having same dimension k, of X and Y respectively. Then the **image** of A(\subseteq X) under the map f is denoted by f(A) and it is defined as :

 $\forall y \in Y, f(A)(y) = (\mu_{f(A)}(y), \nu_{f(A)}(y))$ where

$$\begin{split} \mu_{f(A)}(y) &= \begin{cases} \max\{\mu_A(x) : x \in f^{-1}(y)\} \\ 0_k \text{ , otherwise} & \text{and} \end{cases} \\ \nu_{f(A)}(y) &= \begin{cases} \min\{\nu_A(x) : x \in f^{-1}(y)\} \\ 1_k \text{ , otherwise} \end{cases} \\ \text{That is, } f(A)(y) &= \begin{cases} \max\{\mu_{iA}(x) : x \in f^{-1}(y)\}, \ \min\{\nu_{iA}(x) : x \in f^{-1}(y)\} \)_{i=1}^k \\ (0,1)_k \text{ , otherwise where } (0,1)_k = ((0,1), (0,1), \dots, k \text{ times }) \end{cases} \end{split}$$

Also, the **pre-image** of $B(\subseteq Y)$ under the map f is denoted by $f^{-1}(B)$ and it is defined as : $\forall x \in X, f^{-1}(B)(x) = (\mu_B(f(x)), \nu_B(f(x)))$

3. PROPERTIES OF (α, β) –LOWER CUT OF INTUITIONISTIC MULTI-FUZZY SET

In this section we shall prove some theorems on intuitionistic multi-anti fuzzy subgroups of a group G with the help of their (α, β) –lower cuts.

3.1 Proposition

If A and B are any two IMFS's of a universal set X, then their (α, β) –lower cuts satisfies the following :

- (i) $[A]_{(\alpha,\beta)} \subseteq [A]_{(\delta,\theta)}$ if $\alpha \le \delta$ and $\beta \ge \theta$
- (ii) $A \subseteq B$ implies $[B]_{(\alpha, \beta)} \subseteq [A]_{(\alpha, \beta)}$
- (iii) $[A \cap B]_{(\alpha, \beta)} = [A]_{(\alpha, \beta)} \cap [B]_{(\alpha, \beta)}$
- (iv) $[A \cup B]_{(\alpha, \beta)} \subseteq [A]_{(\alpha, \beta)} \cup [B]_{(\alpha, \beta)}$ (Here equality holds if $\alpha_i + \beta_i = 1, \forall i$)
- (v) $[\cap A_i]_{(\alpha,\beta)} = \cap [A_i]_{(\alpha,\beta)}$, where $\alpha, \beta, \delta, \theta \in [0,1]^k$

3.2 Proposition

Let (G, .) be a groupoid and A, B be any two IMFS's of G. Then we have $[A \circ B]_{(\alpha, \beta)} = [A]_{(\alpha, \beta)}$ $[B]_{(\alpha, \beta)}$ where $\alpha, \beta \in [0,1]^k$.

3.3 Theorem

If A is an intuitionistic multi-anti fuzzy subgroup of a group G and α , $\beta \in [0,1]^k$, then the (α, β) -lower cut of A, $[A]_{(\alpha, \beta)}$ is a subgroup of G, where $\mu_A(e) \le \alpha$, $\nu_A(e) \ge \beta$ and 'e' is the identity element of G.

 $\begin{array}{l} \text{Proof since } \mu_A(e) \leq \alpha \ \text{and } \nu_A(e) \geq \beta \ , \ e \in [A]_{(\alpha,\,\beta)} \ . \ \text{Therefore, } [A]_{(\alpha,\,\beta)} \neq \phi. \\ \text{Let } x,y \in [A]_{(\alpha,\,\beta)} \ . \ \text{Then } \mu_A(x) \leq \alpha \ , \nu_A(x) \geq \beta \ \text{and } \mu_A(y) \leq \alpha \ , \nu_A(y) \geq \beta. \\ \text{Then } \forall i, \ \mu_{iA}(x) \leq \alpha_i \ , \nu_{iA}(x) \geq \beta_i \ \text{and } \mu_{iA}(y) \leq \alpha_i \ , \nu_{iA}(y) \geq \beta_i \ . \\ \Rightarrow \max\{\mu_{iA}(x), \mu_{iA}(y)\} \leq \alpha_i \ \text{and } \min\{\nu_{iA}(x), \nu_{iA}(y)\} \geq \beta_i \ , \forall i \ \dots \dots \dots \dots (1) \\ \Rightarrow \mu_{iA}(xy^{-1}) \leq \max\{\mu_{iA}(x), \mu_{iA}(y)\} \leq \alpha_i \ \text{and } \nu_{iA}(xy^{-1}) \geq \min\{\nu_{iA}(x), \nu_{iA}(y)\} \geq \beta_i \ , \forall i, \text{ since } A \text{ is an intuitionistic multi-anti fuzzy subgroup of a group G and by (1).} \\ \Rightarrow \mu_{iA}(xy^{-1}) \leq \alpha_i \ \text{and } \nu_{iA}(xy^{-1}) \geq \beta_i \ , \forall i. \\ \Rightarrow \mu_A(xy^{-1}) \leq \alpha \ \text{and } \nu_A(xy^{-1}) \geq \beta \\ \Rightarrow xy^{-1} \in [A]_{(\alpha,\,\beta)} \\ \Rightarrow [A]_{(\alpha,\,\beta)} \text{ is a subgroup of G.} \end{array}$

Hence the Theorem.

3.4 Theorem

The IMFS A is an intuitionistic multi-anti fuzzy subgroup of a group $G \Leftrightarrow \text{each}(\alpha,\beta)$ -lower cut $[A]_{(\alpha,\beta)}$ is a subgroup of $G, \forall \alpha, \beta \in [0, 1]^k$.

Proof From the above Theorem 3.3, it is clear.

3.5 Theorem

If A is an intuitionistic multi-anti fuzzy normal subgroup of a group G and α , $\beta \in [0, 1]^k$, then (α, β) -lower cut $[A]_{(\alpha, \beta)}$ is a normal subgroup of G, where $\mu_A(e) \leq \alpha$, $\nu_A(e) \geq \beta$ and 'e' is the identity element of G.

Proof Let $x \in [A]_{(\alpha,\beta)}$ and $g \in G$. Then $\mu_A(x) \le \alpha$ and $\nu_A(x) \ge \beta$.

That is, $\mu_{iA}(x) \le \alpha_i$ and $\nu_{iA}(x) \ge \beta_i \quad \forall i \quad \dots \dots \dots (1)$

Since A is an intuitionistic multi-anti fuzzy normal subgroup of G,

$$\begin{split} & \mu_{iA}(g^{-1}xg) = \mu_{iA}(x) \text{ and } \nu_{iA}(g^{-1}xg) = \nu_{iA}(x), \ \forall i. \\ \Rightarrow & \mu_{iA}(g^{-1}xg) = \mu_{iA}(x) \leq \alpha_i \text{ and } \nu_{iA}(g^{-1}xg) = \nu_{iA}(x) \geq \beta_i \ , \forall i, \ by \ using(1). \\ \Rightarrow & \mu_{iA}(g^{-1}xg) \leq \alpha_i \text{ and } \nu_{iA}(g^{-1}xg) \geq \beta_i \ , \forall i. \\ \Rightarrow & \mu_{A}(g^{-1}xg) \leq \alpha \text{ and } \nu_{A}(g^{-1}xg) \geq \beta \\ \Rightarrow & g^{-1}xg \in [A]_{(\alpha, \beta)} \\ \Rightarrow & [A]_{(\alpha, \beta)} \text{ is a normal subgroup of } G. \end{split}$$

Hence the Theorem.

3.6 Theorem

If A is an intuitionistic multi-fuzzy subset of a group G, then A is an intuitionistic multi-anti fuzzy subgroup of G \Leftrightarrow each (α, β) -lower cut $[A]_{(\alpha, \beta)}$ is a subgroup of G, for all $\alpha, \beta \in [0,1]^k$ with $\alpha_i + \beta_i \le 1, \forall i$.

Proof \Rightarrow Let A be an intuitionistic multi-anti fuzzy subgroup of a group G. Then by the Theorem 3.4, each (α, β) -lower cut $[A]_{(\alpha, \beta)}$ is a subgroup of G for all $\alpha, \beta \in [0,1]^k$ with $\alpha_i + \beta_i \le 1, \forall i$.

← Conversely, let A be an intuitionistic multi-fuzzy subset of a group G such that each (α, β) -lower cut $[A]_{(\alpha, \beta)}$ is a subgroup of G for all α, β∈ $[0,1]^k$ with $\alpha_i + \beta_i \le 1$, $\forall i$.

To prove that A is an intuitionistic multi-anti fuzzy subgroup of G, we prove :

(i) $\mu_A(xy) \le \max\{\mu_A(x), \mu_A(y)\}\ \text{and}\ \nu_A(xy) \ge \min\{\nu_A(x), \nu_A(y)\}\ \text{for all } x, y \in G$ (ii) $\mu_A(x^{-1}) = \mu_A(x)$ and $\nu_A(x^{-1}) = \nu_A(x)$

For proof (i): Let $x, y \in G$ and for all i,

let $\alpha_i = \max{\{\mu_{iA}(x), \mu_{iA}(y)\}}$ and $\beta_i = \min{\{\nu_{iA}(x), \nu_{iA}(y)\}}$.

Then $\forall i$, we have $\mu_{iA}(x) \leq \alpha_i$, $\mu_{iA}(y) \leq \alpha_i$ and $\nu_{iA}(x) \geq \beta_i$, $\nu_{iA}(y) \geq \beta_i$

That is, $\forall i$, we have $\mu_{iA}(x) \leq \alpha_i$, $\nu_{iA}(x) \geq \beta_i$ and $\mu_{iA}(y) \leq \alpha_i$, $\nu_{iA}(y) \geq \beta_i$

Then we have $\mu_A(x) \le \alpha$, $\nu_A(x) \ge \beta$ and $\mu_A(y) \le \alpha$, $\nu_A(y) \ge \beta$

That is, $x \in [A]_{(\alpha, \beta)}$ and $y \in [A]_{(\alpha, \beta)}$

Therefore, $xy \in [A]_{(\alpha, \beta)}$, since each (α, β) -lower cut $[A]_{(\alpha, \beta)}$ is a subgroup by hypothesis.

Therefore, $\forall i$, we have $\mu_{iA}(xy) \leq \alpha_i = \max\{\mu_{iA}(x), \mu_{iA}(y)\}$ and $\nu_{iA}(xy) \geq \beta_i = \min\{\nu_{iA}(x), \nu_{iA}(y)\}.$

That is, $\mu_A(xy) \le \max{\{\mu_A(x), \mu_A(y)\}}$ and $\nu_A(xy) \ge \min{\{\nu_A(x), \nu_A(y)\}}$ and hence (i).

For proof (ii): Let $x \in G$ and $\forall i$, let $\mu_{iA}(x) = \alpha_i$ and $\nu_{iA}(x) = \beta_i$.

Then $\mu_{iA}(x) \le \alpha_i$ and $\nu_{iA}(x) \ge \beta_i$ is true $\forall i$.

Therefore, $\mu_A(x) \le \alpha$ and $\nu_A(x) \ge \beta$

Therefore, $x \in [A]_{(\alpha, \beta)}$.

Since each (α, β) -lower cut $[A]_{(\alpha, \beta)}$ is a subgroup of G for all $\alpha, \beta \in [0,1]^k$ and $x \in [A]_{(\alpha, \beta)}$, we have

 $x^{-1} \in [A]_{(\alpha,\beta)}$ which implies that $\mu_{iA}(x^{-1}) \le \alpha_i$ and $\nu_{iA}(x^{-1}) \ge \beta_i$ is true $\forall i$.

 $\Rightarrow \mu_{iA}(x^{-1}) \le \mu_{iA}(x) \text{ and } \nu_{iA}(x^{-1}) \ge \nu_{iA}(x) \text{ is true } \forall i.$

Thus, $\forall i, \mu_{iA}(x) = \mu_{iA}((x^{-1})^{-1}) \le \mu_{iA}(x^{-1}) \le \mu_{iA}(x)$ which implies that $\mu_{iA}(x^{-1}) = \mu_{iA}(x)$, $\forall i$ and hence $\mu_A(x^{-1}) = \mu_A(x)$.

And $\forall i, v_{iA}(x) = v_{iA}((x^{-1})^{-1}) \ge v_{iA}(x^{-1}) \ge v_{iA}(x)$ which implies that $v_{iA}(x^{-1}) = v_{iA}(x)$, $\forall i$ and hence $v_A(x^{-1}) = v_A(x)$.

Hence A is an intuitionistic multi-anti fuzzy subgroup of G and hence the Theorem.

3.7 Theorem

If A and B are any two intuitionistic multi-anti fuzzy subgroups (IMAFSG's) of a group G, then $(A \cup B)$ is an intuitionistic multi-anti fuzzy subgroup of G. **Proof** since A and B are IMAFSG's of G, we have $\forall x, y \in G$,

- (i) $\mu_A(xy^{-1}) \le \max\{\mu_A(x), \mu_A(y)\} \text{ and } \nu_A(xy^{-1}) \ge \min\{\nu_A(x), \nu_A(y)\}$
- (ii) $\mu_B(xy^{-1}) \le \max\{\mu_B(x), \mu_B(y)\} \text{ and } \nu_B(xy^{-1}) \ge \min\{\nu_B(x), \nu_B(y)\} \dots \dots (1)$

Now $A \cup B = \{ \langle x, \mu_{A \cup B}(x), \nu_{A \cup B}(x) \rangle : x \in G \}$ where $\mu_{A \cup B}(x) = \max\{ \mu_A(x), \mu_B(x) \}$ and $\nu_{A \cup B}(x) = \min\{ \nu_A(x), \nu_B(x) \}$.

Then $\mu_{A\cup B}(xy^{-1}) = \max\{ \mu_A(xy^{-1}), \mu_B(xy^{-1}) \}$ $\leq \max\{ \max\{ \mu_A(x), \mu_A(y) \}, \max\{ \mu_B(x), \mu_B(y) \} \}, \text{ by using (1)}$ $= \max\{ \max\{ \mu_A(x), \mu_B(x) \}, \max\{ \mu_A(y), \mu_B(y) \} \}$ $= \max\{ \mu_{A\cup B}(x), \mu_{A\cup B}(y) \}$

and
$$v_{A\cup B}(xy) = \min\{v_A(xy), v_B(xy)\}\$$

 $\geq \min\{\min\{v_A(x), v_A(y)\}, \min\{v_B(x), v_B(y)\}\}$, by using (1)
 $= \min\{\min\{v_A(x), v_B(x)\}, \min\{v_A(y), v_B(y)\}\}\$
 $= \min\{v_{A\cup B}(x), v_{A\cup B}(y)\}\$

That is, $\mu_{A\cup B}(xy^{-1}) \leq \max\{ \mu_{A\cup B}(x), \mu_{A\cup B}(y) \}$ and $\nu_{A\cup B}(xy^{-1}) \geq \min\{ \nu_{A\cup B}(x), \nu_{A\cup B}(y) \}, \forall x, y \in G.$

Hence $(A \cup B)$ is an intuitionistic multi-anti fuzzy subgroup of G.

Hence the Theorem.

3.8 Theorem

The intersection of any two IMAFSG's of a group G need not be an IMAFSG of G.

Proof Consider the abelian group $G = \{e, a, b, ab\}$ with usual multiplication such that $a^2 = e = b^2$ and ab = ba. Let $A = \{ < e, (0.2, 0.2), (0.7, 0.8) >, < a, (0.5, 0.5), (0.4, 0.4) >, < b, (0.5, 0.5), (0.2, 0.4) >, < ab, (0.4, 0.5), (0.2, 0.4) > \}$ and $B = \{ < e, (0.3, 0.1), (0.7, 0.8) >, < a, (0.8, 0.4), (0.2, 0.6) >, < b, (0.6, 0.4), (0.4, 0.5) >, < ab, (0.8, 0.4), (0.2, 0.5) > \}$ be two IMFS's having dimension two of the group G. Clearly A and B are IMAFSG's of G.

Then $A \cap B = \{ \langle e, (0.2, 0.1), (0.7, 0.8) \rangle, \langle a, (0.5, 0.4), (0.4, 0.6) \rangle, \langle b, (0.5, 0.4), (0.4, 0.5) \rangle, \langle ab, (0.4, 0.4), (0.2, 0.5) \rangle \}$. Here, it is easily verify that $A \cap B$ is not an IMAFSG of G. Hence the Theorem.

3.9 Theorem

Let A and B be an IMAFSG's of a group G. But it is an uncertain to verify that $A \cap B$ is an IMAFSG of G.

Proof This proof is done by the following two examples that are discussed in two cases : case(i) and case(ii).

Case (i) : A and B are IMAFSG's of a group $G \Rightarrow A \cup B$ is an IMAFSG of G but $A \cap B$ is not an IMAFSG of the group G.

Consider the abelian group G = { e, a, b, ab } with usual multiplication such that $a^2 = e = b^2$ and ab = ba. Let A = { < e, (0.2, 0.2), (0.7, 0.8) >, < a, (0.5, 0.5), (0.4, 0.4) >, < b, (0.5, 0.5), (0.2, 0.4) >, < ab, (0.4, 0.5), (0.2, 0.4) > } and B = { < e, (0.3, 0.1), (0.7, 0.8) >, < a, (0.8, 0.4), (0.2, 0.6) >, < b, (0.6, 0.4), (0.4, 0.5) >, < ab, (0.8, 0.4), (0.2, 0.5) > } be two IMFS's having dimension two of the group G. Clearly A and B are IMAFSG's of G.

Then $A \cup B = \{ \langle e, (0.3, 0.2), (0.7, 0.8) \rangle, \langle a, (0.8, 0.5), (0.2, 0.4) \rangle, \langle b, (0.6, 0.5), (0.2, 0.4) \rangle, \langle ab, (0.8, 0.5), (0.2, 0.4) \rangle \}$ and $A \cap B = \{ \langle e, (0.2, 0.1), (0.7, 0.8) \rangle, \langle a, (0.5, 0.4), (0.4, 0.6) \rangle, \langle b, (0.5, 0.4), (0.4, 0.5) \rangle, \langle ab, (0.4, 0.4), (0.2, 0.5) \rangle \}$.

Here, it is easily verify that $A \cup B$ is an IMAFSG of G but $A \cap B$ is not an IMAFSG of G. Hence case (i).

Case (ii) : A and B are IMAFSG's of a group $G \Rightarrow$ both $A \cup B$ and $A \cap B$ are IMAFSG's of the group G.

Consider the abelian group G = { e, a, b, ab } with usual multiplication such that $a^2 = e = b^2$ and ab = ba. Let A = { < e, (0.2, 0.1), (0.8, 0.8) >, < a, (0.5, 0.4), (0.4, 0.6) >, < b, (0.5, 0.4), (0.4, 0.5) >, < ab, (0.5, 0.4), (0.4, 0.5) > } and B = { < e, (0.3, 0.2), (0.7, 0.7) >, < a, (0.8, 0.5), (0.2, 0.4) >, < b, (0.6, 0.5), (0.4, 0.2) >, < ab, (0.8, 0.4), (0.2, 0.2) > } be two IMFS's having dimension two of the group G. Clearly A and B are IMAFSG's of G.

Then $A \cup B = \{ \langle e, (0.3, 0.2), (0.7, 0.7) \rangle, \langle a, (0.8, 0.5), (0.2, 0.4) \rangle, \langle b, (0.6, 0.5), (0.4, 0.2) \rangle, \langle ab, (0.8, 0.4), (0.2, 0.2) \rangle \}$ and $A \cap B = \{ \langle e, (0.2, 0.1), (0.8, 0.8) \rangle, \langle a, (0.5, 0.4), (0.4, 0.6) \rangle, \langle b, (0.5, 0.4), (0.4, 0.5) \rangle, \langle ab, (0.5, 0.4), (0.4, 0.5) \rangle \}$.

Here, it is easily to verify that both $A \cup B$ and $A \cap B$ are IMAFSG's of G. Hence case (ii).

From case (i) and case (ii), clearly it is an uncertain to verify that $A \cap B$ is an IMAFSG of G.

Hence the Theorem.

3.10 Theorem

Let A and B be any two IMAFSG's of a group G. Then $A \circ B$ is an IMAFSG of $G \Leftrightarrow A \circ B = B \circ A$

Proof Since A and B are IMAFSG's of G, each (α, β) -lower cuts $[A]_{(\alpha, \beta)}$ and $[B]_{(\alpha, \beta)}$ are subgroups of G, $\forall \alpha, \beta \in [0,1]^k$ with $\alpha_i + \beta_i \le 1$, $\forall i$ (1)

Suppose A°B is an IMAFSG of G.

 \Leftrightarrow each (α, β)-lower cuts [A°B]_(α, β) are subgroups of G, ∀α,β∈ [0,1]^k with α_i + β_i ≤ 1, ∀i.

Now, from (1), $[A]_{(\alpha,\beta)}[B]_{(\alpha,\beta)}$ is a subgroup of $G \Leftrightarrow [A]_{(\alpha,\beta)}[B]_{(\alpha,\beta)} = [B]_{(\alpha,\beta)}[A]_{(\alpha,\beta)}$, since if H and K are any two subgroups of G, then HK is a subgroup of $G \Leftrightarrow HK=KH$.

$$\Leftrightarrow [A \circ B]_{(\alpha, \beta)} = [B \circ A]_{(\alpha, \beta)}, \forall \alpha, \beta \in [0, 1]^k \text{ with } \alpha_i + \beta_i \le 1, \forall i.$$
$$\Leftrightarrow A \circ B = B \circ A$$

Hence the Theorem.

3.11 Theorem

If A is any IMAFSG of a group G, then $A \circ A = A$.

Proof Since A is an IMAFSG of a group G,

each (α, β) -lower cut $[A]_{(\alpha, \beta)}$ is a subgroup of G, $\forall \alpha, \beta \in [0, 1]^k$ with $\alpha_i + \beta_i \le 1$, $\forall i$.

 \Rightarrow [A]_(α, β)[A]_(α, β) = [A]_(α, β), since H is a subgroup of G \Rightarrow HH = H.

 $\Rightarrow [A \circ A]_{(\alpha, \beta)} = [A]_{(\alpha, \beta)}, \forall \alpha, \beta \in [0, 1]^k \text{ with } \alpha_i + \beta_i \le 1, \forall i.$

 $\Rightarrow A \circ A = A$

Hence the Theorem.

4. INTUITIONISTIC MULTI-FUZZY COSETS

In this section we shall prove some theorems on intuitionistic multi-fuzzy cosets of a group G.

4.1 Definition

Let G be a group and A be an IMAFSG of G. Let $x \in G$ be a fixed element. Then the set $xA = \{(g, \mu_{xA}(g), \nu_{xA}(g)) : g \in G \}$ where $\mu_{xA}(g) = \mu_A(x^{-1}g)$ and $\nu_{xA}(g) = \nu_A(x^{-1}g)$, $\forall g \in G$ is called the intuitionistic multi-fuzzy left coset of G determined by A and x.

Similarly, the set $Ax = \{ (g, \mu_{Ax}(g), \nu_{Ax}(g)) : g \in G \}$ where $\mu_{Ax}(g) = \mu_A(gx^{-1})$ and $\nu_{Ax}(g) = \nu_A(gx^{-1}), \forall g \in G \text{ is called the intuitionistic multi-fuzzy right coset of G determined by A and x.$

4.2 Remark

It is clear that if A is an intuitionistic multi-anti fuzzy normal subgroup of G, then the intuitionistic multi-fuzzy left coset and the intuitionistic multi-fuzzy right coset of A on G coincides and in this case, we simply call it as intuitionistic multi-fuzzy coset.

4.3 Example

Let G be a group. Then A = { < x, $\mu_A(x)$, $\nu_A(x)$ >, $x \in G / \mu_A(x) = \mu_A(e)$ and $\nu_A(x) = \nu_A(e)$ } is an

intuitionistic multi-anti fuzzy normal subgroup of G.

Proof It is easy to verify.

4.4 Theorem

Let A be an intuitionistic multi-anti fuzzy subgroup of a group G and x be any fixed element of G. Then the following are holds :

(i) $x[A]_{(\alpha,\beta)} = [xA]_{(\alpha,\beta)}$ (ii) $[A]_{(\alpha,\beta)}x = [Ax]_{(\alpha,\beta)}, \forall \alpha, \beta \in [0,1]^k \text{ with } \alpha_i + \beta_i \le 1, \forall i.$

Proof For proof (i),

Now $[xA]_{(\alpha,\beta)} = \{ g \in G : \mu_{xA}(g) \le \alpha \text{ and } \nu_{xA}(g) \ge \beta \}$ with $\alpha_i + \beta_i \le 1, \forall i$.

Also $x[A]_{(\alpha,\beta)} = x\{ y \in G : \mu_A(y) \le \alpha \text{ and } \nu_A(y) \ge \beta \}$ = { $xy \in G : \mu_A(y) \le \alpha \text{ and } \nu_A(y) \ge \beta \} \dots(1)$

put $xy = g \implies y = x^{-1}g$. Then (1) becomes as,

$$\begin{split} x[A]_{(\alpha,\beta)} &= \{ g \in G : \mu_A(x^{-1}g) \leq \alpha \text{ and } \nu_A(x^{-1}g) \geq \beta \} \\ &= \{ g \in G : \mu_{xA}(g) \leq \alpha \text{ and } \nu_{xA}(g) \geq \beta \} \\ &= [xA]_{(\alpha,\beta)} \end{split}$$

Therefore, $x[A]_{(\alpha,\beta)} = [xA]_{(\alpha,\beta)}, \forall \alpha, \beta \in [0,1]^k$ with $\alpha_i + \beta_i \le 1, \forall i$.

Hence the proof (i).

For proof (ii),

Now $[Ax]_{(\alpha,\beta)} = \{ g \in G : \mu_{Ax}(g) \le \alpha \text{ and } \nu_{Ax}(g) \ge \beta \} \text{ with } \alpha_i + \beta_i \le 1, \forall i.$

Also $[A]_{(\alpha,\beta)}x = \{ y \in G : \mu_A(y) \le \alpha \text{ and } \nu_A(y) \ge \beta \}x$ = $\{ yx \in G : \mu_A(y) \le \alpha \text{ and } \nu_A(y) \ge \beta \} \dots (2)$

put $yx = g \implies y = gx^{-1}$. Then (2) becomes as,

$$\begin{split} [A]_{(\alpha, \beta)} x &= \{ \ g \in G : \mu_A(gx^{-1}) \leq \alpha \ \text{ and } \nu_A(gx^{-1}) \geq \beta \ \} \\ &= \{ \ g \in G : \mu_{Ax}(g) \leq \alpha \ \text{ and } \nu_{Ax}(g) \geq \beta \ \} \\ &= [Ax]_{(\alpha, \beta)} \end{split}$$

Therefore, $[A]_{(\alpha,\beta)}x = [Ax]_{(\alpha,\beta)}, \forall \alpha, \beta \in [0,1]^k$ with $\alpha_i + \beta_i \le 1, \forall i$.

Hence the proof (ii) and hence the Theorem.

4.5 Theorem

Let A be an intuitionistic multi-anti fuzzy subgroup of a group G. Let x,y be any two elements of G such that $\alpha = \max\{ \mu_A(x), \mu_A(y) \}$ and $\beta = \min\{ \nu_A(x), \nu_A(y) \}$. Then the

following are holds :

(i) $xA = yA \iff x^{-1}y \in [A]_{(\alpha, \beta)}$ (ii) $Ax = Ay \iff xy^{-1} \in [A]_{(\alpha, \beta)}$ (iii)

Proof For (i), Now $xA = yA \Leftrightarrow [xA]_{(\alpha,\beta)} = [yA]_{(\alpha,\beta)}, \forall \alpha, \beta \in [0,1]^k$ with $\alpha_i + \beta_i \le 1, \forall i$.

 $\Leftrightarrow x[A]_{(\alpha, \beta)} = y[A]_{(\alpha, \beta)}, by \text{ Theorem 4.4(i).}$ $\Leftrightarrow x^{-1}y \in [A]_{(\alpha, \beta)}, \text{ since each } (\alpha, \beta)\text{-lower cut } [A]_{(\alpha, \beta)} \text{ is a}$

subgroup of G. Hence the proof (i).

For (ii), Now Ax = Ay $\Leftrightarrow [Ax]_{(\alpha, \beta)} = [Ay]_{(\alpha, \beta)}, \forall \alpha, \beta \in [0,1]^k \text{ with } \alpha_i + \beta_i \le 1, \forall i.$ $\Leftrightarrow [A]_{(\alpha, \beta)}x = [A]_{(\alpha, \beta)}y$, by Theorem 4.4(ii). $\Leftrightarrow xy^{-1} \in [A]_{(\alpha, \beta)}$, since each (α, β) -lower cut $[A]_{(\alpha, \beta)}$ is a

subgroup of G. Hence the proof (ii) and hence the Theorem.

5. HOMOMORPHISM OF INTUITIONISTIC MULTI-ANTI FUZZY SUBGROUPS

In this section we shall prove some theorems on intuitionistic multi-anti fuzzy subgroups of a group with the help of a homomorphism.

5.1 Proposition

Let $f : X \to Y$ be an onto map. If A and B are intuitionistic multi-fuzzy sets having the dimension k of X and Y respectively, then for each (α, β) -lower cuts $[A]_{(\alpha, \beta)}$ and $[B]_{(\alpha, \beta)}$, the following are holds :

(i)
$$f([A]_{(\alpha,\beta)}) \subseteq [f(A)]_{(\alpha,\beta)}$$

(ii) $f^{-1}([B]_{(\alpha,\beta)}) = [f^{-1}(B)]_{(\alpha,\beta)}, \forall \alpha, \beta \in [0,1]^k \text{ with } \alpha_i + \beta_i \le 1, \forall i.$

Proof For (i), Let $y \in f([A]_{(\alpha, \beta)})$.

Then there exists an element $x \in [A]_{(\alpha, \beta)}$ such that f(x) = y.

Then we have $\mu_A(x) \le \alpha$ and $\nu_A(x) \ge \beta$, since $x \in [A]_{(\alpha, \beta)}$.

 $\begin{aligned} &\Rightarrow \mu_{iA}(x) \leq \alpha_i \text{ and } \nu_{iA}(x) \geq \beta_i \text{ ,} \forall i. \\ &\Rightarrow \min\{\mu_{iA}(x) : x \in f^1(y)\} \leq \alpha_i \text{ and } \max\{\nu_{iA}(x) : x \in f^1(y)\} \geq \beta_i \text{ ,} \forall i. \\ &\Rightarrow \min\{\mu_A(x) : x \in f^1(y)\} \leq \alpha \text{ and } \max\{\nu_A(x) : x \in f^1(y)\} \geq \beta \\ &\Rightarrow \mu_{f(A)}(y) \leq \alpha \text{ and } \nu_{f(A)}(y) \geq \beta \\ &\Rightarrow y \in [f(A)]_{(\alpha,\beta)} \end{aligned}$

Therefore, f($[A]_{(\alpha, \beta)}$) \subseteq [f(A)]_(α, β), $\forall A \in IMFS(X)$. Hence the proof (i). For the proof (ii),

 $\begin{array}{rl} Let \; x \! \in \! [f^{-1}(B)]_{(\alpha,\;\beta)} & \Leftrightarrow \{x \! \in \! X: \mu_{f}^{-1}{}_{(B)}(x) \leq \alpha \; , \; \nu_{f}^{-1}{}_{(B)}(x) \geq \beta \; \} \\ & \Leftrightarrow \{x \! \in \! X: \mu_{if}^{-1}{}_{(B)}(x) \leq \alpha_{i} \; , \; \nu_{if}^{-1}{}_{(B)}(x) \geq \beta_{i} \; \}, \forall i. \\ & \Leftrightarrow \{x \! \in \! X: \mu_{iB}(f(x)) \leq \alpha_{i} \; , \; \nu_{iB}(f(x)) \geq \beta_{i} \; \}, \forall i. \end{array}$

$$\begin{split} & \Leftrightarrow \{ x \in X : \mu_B(f(x)) \leq \alpha \ , \ \nu_B(f(x)) \geq \beta \ \} \\ & \Leftrightarrow \{ x \in X : f(x) \in [B]_{(\alpha, \beta)} \ \} \\ & \Leftrightarrow \{ x \in X : x \in f^{-1}([B]_{(\alpha, \beta)}) \ \} \\ & \Leftrightarrow f^{-1}([B]_{(\alpha, \beta)}) \end{split}$$

Hence the proof (ii).

5.2 Theorem

Let $f : G_1 \rightarrow G_2$ be an onto homomorphism and if A is an IMAFSG of group G_1 , then f(A) is an IMAFSG of group G_2 .

Proof By Theorem 3.6, it is enough to prove that each (α, β) -lower cuts $[f(A)]_{(\alpha, \beta)}$ is a subgroup of G_2 for all $\alpha, \beta \in [0,1]^k$ with $\alpha_i + \beta_i \le 1, \forall i$.

Let $y_1, y_2 \in [f(A)]_{(\alpha, \beta)}$. Then $\mu_{f(A)}(y_1) \leq \alpha$, $\nu_{f(A)}(y_1) \geq \beta$ and $\mu_{f(A)}(y_2) \leq \alpha$, $\nu_{f(A)}(y_2) \geq \beta$ $\Rightarrow \mu_{if(A)}(y_1) \leq \alpha_i$, $\nu_{if(A)}(y_1) \geq \beta_i$ and $\mu_{if(A)}(y_2) \leq \alpha_i$, $\nu_{if(A)}(y_2) \geq \beta_i$, $\forall i$(1)

By the proposition 5.1(i), we have $f([A]_{(\alpha,\beta)}) \subseteq [f(A)]_{(\alpha,\beta)}$, $\forall A \in IMFS(G_1)$

Since f is onto, there exists some x_1 and x_2 in G_1 such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Therefore, (1) becomes as,

 $\mu_{if(A)}(\ f(x_1)\) \leq \alpha_i \ , \nu_{if(A)}(\ f(x_1)\) \geq \beta_i \ and \ \mu_{if(A)}(\ f(x_2)\) \leq \alpha_i \ , \nu_{if(A)}(\ f(x_2)\) \geq \beta_i \ , \forall i.$

 $\Rightarrow \mu_{iA}(x_1) \leq \mu_{if(A)}(\ f(x_1)\) \leq \alpha_i \ , \ \nu_{iA}(x_1) \geq \nu_{if(A)}(\ f(x_1)\) \geq \beta_i \ and \\ \mu_{iA}(x_2) \leq \mu_{if(A)}(\ f(x_2)\) \leq \alpha_i \ , \ \nu_{iA}(x_2) \geq \nu_{if(A)}(\ f(x_2)\) \geq \beta_i \ , \forall i.$

 $\Rightarrow \mu_{iA}(x_1) \leq \alpha_i \ , \ \nu_{iA}(x_1) \geq \beta_i \ \text{ and } \mu_{iA}(x_2) \leq \alpha_i \ , \ \nu_{iA}(x_2) \geq \beta_i \ , \forall i.$

 $\Rightarrow \mu_A(x_1) \leq \alpha \ , \ \nu_A(x_1) \geq \beta \ \text{ and } \ \mu_A(x_2) \leq \alpha \ , \ \nu_A(x_2) \geq \beta$

 $\Rightarrow \max\{\mu_A(x_1), \mu_A(x_2)\} \le \alpha \text{ and } \min\{\nu_A(x_1), \nu_A(x_2)\} \ge \beta$

 $\Rightarrow \mu_A(x_1x_2^{-1}) \le \max\{\mu_A(x_1), \ \mu_A(x_2)\} \le \alpha \quad \text{and} \quad \nu_A(x_1x_2^{-1}) \ge \min\{\nu_A(x_1), \ \nu_A(x_2)\} \ge \beta \text{ ,since } A \in IMAFSG(G_1).$

 $\Rightarrow \mu_A(x_1x_2^{-1}) \le \alpha \text{ and } \nu_A(x_1x_2^{-1}) \ge \beta$

 $\Rightarrow x_1 x_2^{\text{-1}} \in [A]_{(\alpha, \beta)}$

 $\Rightarrow f(x_1 x_2^{-1}) \in f([A]_{(\alpha, \beta)}) \subseteq [f(A)]_{(\alpha, \beta)}$

 $\Rightarrow f(x_1)f(x_2^{-1}) \in [f(A)]_{(\alpha, \beta)}$

 $\Rightarrow f(x_1)f(x_2)^{\text{-1}} \in [f(A)]_{(\alpha, \beta)}$

 \Rightarrow y₁y₂⁻¹ \in [f(A)]_(α, β)

 $\Rightarrow [f(A)]_{(\alpha, \beta)} \text{ is a subgroup of } G_2 , \forall \alpha, \beta \in [0, 1]^k .$

 \Rightarrow f(A) \in IMAFSG(G₂)

Hence the Theorem.

5.3 Corollary

If $f: G_1 \to G_2$ be a homomorphism of a group G_1 onto a group G_2 and $\{A_i : i \in I\}$ be a family of IMAFSG's of group G_1 , then $f(\cup A_i)$ is an IMAFSG of group G_2 .

5.4 Theorem

Let $f: G_1 \to G_2$ be a homomorphism of a group G_1 into a group G_2 . If B is an IMAFSG of G_2 , then $f^1(B)$ is also an IMAFSG of G_1 .

Proof By Theorem 3.6, it is enough to prove that each (α, β) -lower cuts $[f^{1}(B)]_{(\alpha, \beta)}$ is a subgroup of $G_{1}, \forall \alpha, \beta \in [0,1]^{k}$ with $\alpha_{i} + \beta_{i} \leq 1, \forall i$.

Let $x_1, x_2 \in [f^{-1}(B)]_{(\alpha, \beta)}$. Then it implies that

 $\mu_{f^{-1}(B)}^{-1}(x_1) \leq \alpha \ , \ \nu_{f^{-1}(B)}^{-1}(x_1) \geq \beta \ \text{ and } \ \mu_{f^{-1}(B)}^{-1}(x_2) \leq \alpha \ , \ \nu_{f^{-1}(B)}^{-1}(x_2) \geq \beta.$

 $\Rightarrow \mu_B(f(x_1)) \leq \alpha \ , \ \nu_B(f(x_1)) \geq \beta \ \text{ and } \ \mu_B(f(x_2)) \leq \alpha \ , \ \nu_B(f(x_2)) \geq \beta.$

- $\Rightarrow \max\{ \ \mu_B(f(x_1)), \ \mu_B(f(x_2)) \ \} \leq \alpha \quad \text{and} \quad \min\{ \ \nu_B(f(x_1)), \ \nu_B(f(x_2)) \ \} \geq \beta.$
- $\Rightarrow \mu_{B}(f(x_{1})f(x_{2})^{-1}) \leq \max\{ \mu_{B}(f(x_{1})), \mu_{B}(f(x_{2})) \} \leq \alpha \text{ and} \\ \nu_{B}(f(x_{1})f(x_{2})^{-1}) \geq \min\{ \nu_{B}(f(x_{1})), \nu_{B}(f(x_{2})) \} \geq \beta \text{ ,since } B \in IMAFSG(G_{2}).$
- $\Rightarrow f(x_1)f(x_2)^{-1} \in [B]_{(\alpha, \beta)}$
- \Rightarrow f(x₁x₂⁻¹) \in [B]_(α, β), since f is a homomorphism.

 \Rightarrow x₁x₂⁻¹ \in f⁻¹([B]_(α, β)) = [f⁻¹(B)]_(α, β), by the proposition 5.1(ii).

- $\Rightarrow x_1 x_2^{-1} \in [f^{-1}(B)]_{(\alpha, \beta)}$
- \Rightarrow [f⁻¹(B)]_(α, β) is a subgroup of G₁
- \Rightarrow f⁻¹(B) is an IMAFSG of G₁.

Hence the Theorem.

5.5 Theorem

Let $f: G_1 \to G_2$ be a surjective homomorphism and if A is an IMAFNSG of group G_1 , then f(A) is also an IMAFNSG of group G_2 .

Proof Let $g_2 \in G_2$ and $y \in f(A)$.

Since f is surjective,

there exists $g_1 \in G_1$ and $x \in A$ such that f(x) = y and $f(g_1) = g_2$.

Since A is an IMAFNSG of G₁,

$$\mu_A(g_1^{-1}xg_1) = \mu_A(x)$$
 and $\nu_A(g_1^{-1}xg_1) = \nu_A(x)$, $\forall x \in A$ and $g_1 \in G_1$.

Now consider, $\mu_{f(A)}(g_2^{-1}yg_2) = \mu_{f(A)}(f(g_1^{-1}xg_1))$, since f is a homomorphism.

```
\begin{split} &= \mu_{f(A)}(y') \text{, where } y' = f(g_1^{-1}xg_1) = g_2^{-1}yg_2 \\ &= \min\{ \, \mu_A(x') : f(x') = y' \text{ for } x' \in G_1 \, \} \\ &= \min\{ \, \mu_A(x') : f(x) = f(g_1^{-1}xg_1) \text{ for } x' \in G_1 \, \} \\ &= \min\{ \, \mu_A(g_1^{-1}xg_1) : f(g_1^{-1}xg_1) = y' = g_2^{-1}yg_2 \text{ for } x \in A, \, g_1 \in G_1 \} \\ &= \min\{ \, \mu_A(x) : f(g_1^{-1}xg_1) = g_2^{-1}yg_2 \text{ for } x \in A, \, g_1 \in G_1 \} \\ &= \min\{ \, \mu_A(x) : f(g_1)^{-1}f(x)f(g_1) = g_2^{-1}yg_2 \text{ for } x \in A, \, g_1 \in G_1 \} \\ &= \min\{ \, \mu_A(x) : g_2^{-1}f(x)g_2 = g_2^{-1}yg_2 \text{ for } x \in G_1 \} \\ &= \min\{ \, \mu_A(x) : g_2^{-1}f(x)g_2 = g_2^{-1}yg_2 \text{ for } x \in G_1 \} \\ &= \min\{ \, \mu_A(x) : f(x) = y \text{ for } x \in G_1 \} \\ &= \mu_{f(A)}(y) \end{split}
```

Similarly, we can easily prove that $v_{f(A)}(g_2^{-1}yg_2) = v_{f(A)}(y)$.

Hence f(A) is an IMAFNSG of G_2 and hence the Theorem.

5.6 Theorem

If A is an IMAFNSG of a group G, then there exists a natural homomorphism $f: G \to G/A$ is defined by f(x) = xA, $\forall x \in G$.

Proof Let $f : G \to G/A$ be defined by f(x) = xA, $\forall x \in G$.

Claim1: f is a homomorphism

That is, to prove: $f(xy) = f(x)f(y), \forall x, y \in G$.

That is, to prove: (xy)A = (xA)(yA), $\forall x, y \in G$.

Since A is an IMAFNSG of G, we have $\mu_A(g^{-1}xg) = \mu_A(x)$ and $\nu_A(g^{-1}xg) = \nu_A(x), \forall x \in A \text{ and } g \in G.$

Or, equivalently, $\mu_A(xy) = \mu_A(yx)$ and $\nu_A(xy) = \nu_A(yx)$, $\forall x, y \in G$.

Also, $\forall g \in G$, we have

 $(xA)(g) = (\mu_{xA}(g), \nu_{xA}(g)) = (\mu_A(x^{-1}g), \nu_A(x^{-1}g))$

 $(yA)(g) = (\mu_{yA}(g), \nu_{yA}(g)) = (\mu_A(y^{-1}g), \nu_A(y^{-1}g))$

 $[(xy)A](g) = (\mu_{(xy)A}(g), \nu_{(xy)A}(g)) = (\mu_{A}[(xy)^{-1}g], \nu_{A}[(xy)^{-1}g])$ \for \ge G, by definition 2.16, we have

 $[(xA)(yA)](g) = (\max[\min\{\mu_{xA}(r), \mu_{yA}(s)\} : g = rs], \min[\max\{\nu_{xA}(r), \nu_{yA}(s)\} : g = rs])$ = $(\max[\min\{\mu_A(x^{-1}r), \mu_A(y^{-1}s)\} : g = rs], \min[\max\{\nu_A(x^{-1}r), \nu_A(y^{-1}s)\} : g = rs])$

Claim2: $\mu_A[(xy)^{-1}g] = \max[\min\{\mu_A(x^{-1}r), \mu_A(y^{-1}s)\} : g = rs]$ and $\nu_A[(xy)^{-1}g] = \min[\max\{\nu_A(x^{-1}r), \nu_A(y^{-1}s)\} : g = rs], \forall g \in G.$

Now consider $\mu_A[(xy)^{-1}g] = \mu_A[y^{-1}x^{-1}g]$ = $\mu_A[y^{-1}x^{-1}rs]$, since g = rs. = $\mu_A[y^{-1}(x^{-1}rsy^{-1})y]$ = $\mu_A[x^{-1}rsy^{-1}]$, since A is normal. $\leq max \{ \mu_A(x^{-1}r), \mu_A(sy^{-1}) \}$, since A is IMAFSG of G. = $max \{ \mu_A(x^{-1}r), \mu_A(y^{-1}s) \}$, $\forall g = rs \in G$, since A is normal

Therefore, $\mu_A[(xy)^{-1}g] = \min[\max\{\mu_A(x^{-1}r), \mu_A(y^{-1}s)\} : g = rs], \forall g \in G.$ = max[min{ $\mu_A(x^{-1}r), \mu_A(y^{-1}s)$ } : g = rs], $\forall g \in G.$

Similarly, we can easily prove $v_A[(xy)^{-1}g] = \min[\max\{v_A(x^{-1}r), v_A(y^{-1}s)\} : g = rs], \forall g \in G.$ Hence the claim2.

Thus, $[(xy)A](g) = [(xA)(yA)](g), \forall g \in G.$

 $\Rightarrow (xy)A = (xA)(yA)$ $\Rightarrow f(xy) = f(x)f(y)$

 \Rightarrow f is a homomorphism

Hence the claim1 and hence the Theorem.

6. CONCLUSION

In the theory of fuzzy sets, the level subsets are vital role for its development. Similarly, the (α, β) -lower cut of an intuitionistic multi-fuzzy sets are very important role for the development of the theory of intuitionistic multi-fuzzy sets. In this paper an attempt has been made to study some algebraic natures of intuitionistic multi-anti fuzzy subgroups and their properties with the help of their (α, β) -lower cut sets.

REFERENCES

- [1] Atanassov K.T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), no.1, 87-96.
- [2] Basnet D.K. and Sarma N.K., A note on Intuitionistic Fuzzy Equivalence Relation, International Mathematical Forum, 5, 2010, no.67, 3301-3307.
- [3] Biswas R., Vague Groups, International Journal of Computational Cognition, Vol.4, no.2, June 2006.
- [4] Das P.S., Fuzzy groups and level subgroups, Journal of Mathematical Analysis and Applications, 84 (1981), 264-269.
- [5] Kul Hur and Su Youn Jang, The lattice of Intuitionistic fuzzy congruences, International Mathematical Forum, 1, 2006, no.5, 211-236.
- [6] Mukharjee N.P. and Bhattacharya P., Fuzzy normal subgroups and fuzzy cosets, Information Sciences, 34 (1984), 225-239.

- [7] Muthuraj R. and Balamurugan S., Multi-Anti fuzzy group and its Lower level subgroups, International Journal of Engineering Research and Applications, Vol.3, Issue 6, Nov-Dec 2013, pp.1498-1501.
- [8] Rosenfeld A., Fuzzy groups, Journal of Mathematical Analysis and Applications, 35 (1971), 512-517.
- [9] Sabu S. and Ramakrishnan T.V., Multi-fuzzy sets, International Mathematical Forum, 50 (2010), 2471-2476.
- [10] Sabu S. and Ramakrishnan T.V., Multi-fuzzy topology, International Journal of Applied Mathematics (accepted).
- [11] Sabu S. and Ramakrishnan T.V., Multi-fuzzy subgroups, Int. J. Contemp. Math.Sciences, Vol.6, 8 (2011), 365-372.
- [12] Sharma P.K., Intuitionistic Fuzzy Groups, ifrsa International Journal of Data warehousing and Mining, vol.1, 2011, iss.1, 86-94.
- [13] Shinoj T.K. and Sunil Jacob John, Intuitionistic Fuzzy Multisets, International Journal of Engineering Science and Innovative Technology, Vol.2, 2013, Issue 6, 1-24.
- [14] Zadeh L.A., Fuzzy Sets, Information and Control 8, (1965), 338-353.