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ABSTRACT 
 
Introduction: This project applies linear first-order differential equations to model COVID-19 case 

resolutions within the Veterans Health Administration. This model uses cumulative public health data to 

estimate case resolution, offering a practical tool for managing COVID-19 and potentially other 

communicable disease outbreaks. 

 
Methods: A two-part approach was adopted: Part A models cumulative COVID-19 recovery and death 

rates, while Part B incorporates vaccination data to refine these rates. The model is structured through 

first-order differential equations and a homogeneous mixing assumption, using a meticulously cleaned 

dataset to ensure accurate forecasting of disease outcomes across a healthcare system. 

 
Findings: In Part A, baseline rates (recovery=0.9717, death=0.0267) provided a control for assessing 

vaccination impact. With cumulative vaccination data, in Part B, vaccination-adjusted rates showed 

enhanced recovery (1.5066) and reduced death (0.0193). This model uses public-use, cumulative public 
health surveillance data, enabling real-time adaptations with minimal computational complexity. 

 
Discussion: We demonstrate that vaccination increases COVID-19 recovery rates and reduces mortality 

within a public healthcare system. Using a differential equation model with validated data protocols, this 

approach combines mathematical rigor and data integrity with actionable insights, offering a reliable 

foundation for strategic public health decisions. 

 
Conclusion: COVID-19 case resolution in the Veterans Health Administration was modeled using a first-

order differential approach. Vaccination-adjusted recovery and death rates showed improved outcomes, 

supporting resource planning and related public health efforts. A consistency check validated the stability 

of the model across datasets, supporting its reliability in public health decision-making. 
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1. INTRODUCTION 
 

1.1. Mathematical Models in Public Health Decision-Making 
 
Throughout the COVID-19 pandemic and in other communicable disease outbreaks, 
mathematical models have played a crucial role in guiding public health interventions, predicting 

disease outcomes, and supporting effective resources allocation. These models are essential for 
estimating disease spread, assessing the impact of a public health intervention, and helping to 
prepare a healthcare system for possible surge in disease case counts. The range of models used 
for such purposes [1-8] spans from simple first-order differential equations to highly complex 
simulations, including cohort models, decision-analysis frameworks, and network-based models. 
While more sophisticated models, such as the transmission dynamic models reviewed by Mac et 
al. [1], account for dynamic variables like vaccination rates and population interactions, the 

simplicity of a first-order equation offers distinct advantages. It provides public health decision-
makers with timely, data-driven insights that require minimal computational resources and rely 
on regularly updated public-use surveillance data. Given these needs, a practical, first-order 
differential equation approach serves as a timely and reliable tool, balancing simplicity with 
effectiveness. While stochastic and network-based models offer detailed insights into disease 
transmission [9], they often require extensive data inputs and computational resources, limiting 
their utility in real-time public health applications. No prior instances were identified in PubMed 
(2020 to 2024) where simple, first-order differential equations were used to model case 

resolutions at the health system level for actionable public health decision-making.  
 

1.2. Utility of First-Order Differential Equations 
 
The review of literature includes several more advanced models that incorporate complex factors 

like co-infections [2] and stochastic processes [3] These models allow for a more detailed 
exploration of disease dynamics, particularly in cases where multiple health conditions or 
external interventions are involved. However, even the most advanced models depend heavily on 
the quality and timeliness of data [3]. The first-order differential equation approach used here 
emphasizes practicality and speed, providing public health and healthcare system administrators 
with timely, usable insights during a communicable disease outbreak. For example, while more 
complex models such as those leveraging network theory [5] provide valuable insights into how 
diseases spread through social connections, they often require extensive data inputs and longer 

processing times, which can delay the delivery of actionable insights.  
 
Another important consideration is the role of simplicity in enhancing model transparency and 
usability. While simpler than more advanced options like the ARIMA forecasting models [6] or 
the Padé approximation SIR model [7] can be easily understood and applied by public health and 
healthcare decision-makers without requiring specialized training in mathematical epidemiology. 
The co-infection model [2] highlights the importance of capturing interactions between COVID-

19 and other chronic conditions, the focus of this study remains on COVID-19-specific outcomes. 
By concentrating on a narrower set of parameters—recovery and death rates—the model ensures 
that it can deliver rapid, actionable insights without the need for excessive data or computational 
complexity. 

 

1.3. Infectious Disease Modeling Principles 
 
The practical utility of a simpler, first-order differential equation to deliver timely insights is 
described [8]. Simpler models are often more accessible for decision-making and can be 
particularly useful when policymakers require rapid forecasts for resource allocation and public 
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health interventions. These models align with recommendations to base predictions on accurate, 
current data, ensuring that healthcare administrators receive relevant and actionable information; 
leveraging real-world public health surveillance data supports this usage. Furthermore, while 
more advanced models offer greater granularity, the trade-off in computational complexity and 

data requirements reinforces the choice to employ a first-order differential equation is not only a 
practical one but also reflects the real-world need for models that can adapt quickly to changing 
conditions using readily available data from public health surveillance systems.  
 
Project aim: This project deliberately focuses on first-order differential equations due to their 
accessibility and practicality. These equations rely on principles from applied calculus, a topic 
commonly covered in courses for business, management, economics, social sciences, and life 
sciences. As a result, public health epidemiologists and health administrators are more likely to 

possess foundational knowledge of the utility of these equations, making this approach feasible 
for health system decision-making. In contrast, more complex models often require advanced 
training, limiting their usability in real-world public health applications. 
 

The linear first-order differential equation employed in this study strikes a balance between 
simplicity and utility. It may provide public health and healthcare administrators with a practical 
tool for making informed decisions based on public-use surveillance data. This study uses data 

from the U.S. Department of Veterans Affairs (VA) which oversees the Veterans health 
Administration (VHA)—the largest integrated healthcare system in the United States, serving 
over six million Veterans annually. The aim of this project is to apply linear first-order differential 
equations with cumulative public data to estimate long-term resolution of COVID-19 cases. By 
leveraging cumulative data from Veterans Health Administration (VHA) healthcare facilities, 
including fully vaccinated counts, this model provides valuable insights that can support both 
public health and healthcare system administrators. The use of a public-use dataset from VHA 

highlights its potential utility as a resource for tracking and forecasting infectious disease 
outcomes across integrated healthcare systems. 

 

2. METHODS 
 

2.1. Study Design 
 
This secondary data analysis study uses a mathematical modeling approach to estimate the 

resolution of cumulative active COVID-19 cases in Veterans Health Administration (VHA) 
facilities, focusing on recovery and death outcomes. The model is divided into Part A, which 
estimates cumulative recovery and death rates without vaccination data, and Part B, which 
adjusts these rates based on the cumulative counts of fully vaccinated individuals, including 
Pfizer/Moderna (Dose 2 of 2) or Janssen (Dose 1 of 1) data. Both parts apply first-order 
differential equations to describe the progression of COVID-19 cases, using a homogeneous 
mixing assumption, which simplifies interactions in epidemiological modeling [9]. A detailed 

explanation of first-order differential equations in public health epidemiology provides a 
foundational overview of mathematical modeling [10]. 

 

2.2. Scope 
 

The COVID-19 National Summary data from the Department of Veterans Affairs (VA), 
Veterans Health Administration (VHA), dated October 22, 2024, provides an in-depth view of 
cumulative COVID-19 cases and vaccination efforts across the VA healthcare system (from 2020 
to the Present). As the largest integrated health system in the U.S., serving over six million 
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veterans annually, VHA’s summary data encompass cumulative cases, active cases, recoveries, 
and known deaths. 
 
The report provides vaccination statistics, showing over 5.4 million fully vaccinated individuals, 

with breakdowns by vaccine type (Pfizer/Moderna and Janssen) and recipient groups (veterans, 
VHA employees, and federal partners). Data accessibility features allow for filtering by facility, 
patient category, and demographic factors, presenting a detailed view of COVID-19’s impact 
across the VHA network. Accurate and comprehensive data are crucial for reliable mathematical 
modeling in public health epidemiology. 

 

2.3. Data Accuracy and Updates 
 
The report notes that on September 29, 2021, VA definitions were updated to align with CDC 
standards, adjusting historical cumulative case and death counts. Regular updates enhance data 
accuracy, though some VHA facilities in the process of transitioning to the Cerner Millennium 
electronic health record system may have temporary data gaps. 

 
The “At a Glance” section in the report provides an accessible, current summary of COVID-19’s 
impact across VHA medical facilities. This document establishes the scope and reliability of data 
used in this project, emphasizing VA's commitment to comprehensive coverage, accuracy, and 
structured COVID-19 reporting. 

 

2.4. Data Source 
 
Data for this study were sourced from publicly available cumulative surveillance data available 
on the public VA website. The initial data file (File A) was comprised of the following: 
 

 Active cases (A): Cumulative active COVID-19 cases. 

 Convalescent cases (C): Cumulative total of recovered cases. 
 Known deaths (D): Cumulative deaths attributed to COVID-19. 
 Vaccination data: Cumulative counts of individuals vaccinated with Pfizer/Moderna 

(Dose 2 of 2) or the Janssen vaccine (Dose 1 of 2), which together represent fully 
vaccinated individuals. 

 

The data set contained 322 records representing VHA facilities across the U.S., covering a broad 

span of active cases, recoveries, and vaccination statuses. A final, cleaned dataset of 165 records 
(File B) was used for modeling, ensuring that all facilities had complete key metrics: 
 

 Total Confirmed Cases (A+C+D): 998,748 
 Active Cases (A): 1,655 
 Recovered Cases (C): 970,474 
 Known Deaths (D) : 26,619 

 Baseline Recovery Rate (𝛄𝟏): 0.9717 

 Baseline Death Rate (𝛄𝟐): 0.0267 
 

The dynamic public health surveillance data can be found at this location: 
https://www.accesstocare.va.gov/Healthcare/COVID19NationalSummary 
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2.5. Data Processing 
 
The transition from the initial data file (File A) to the cleaned dataset (File B) followed a 

structured data processing protocol to ensure data quality and data readiness for mathematical 
modeling. Processing was driven by the need for comprehensive cumulative vaccination counts, 
as some facilities lacked data in this area, and complete vaccination counts were essential for 
subsequent modeling. 
 
1. Data Ingestion & Initial Review: Public-use data, sourced from an Agency website, 

included 322 records with cumulative COVID-19 case and vaccination details across VA 

facilities. Preliminary data inspection ensured all fields were properly structured for analysis. 
2. Data Cleaning & Filtering: Vaccination fields initially stored as text were converted to 

integers, and duplicate facility records were removed. Facilities with incomplete key metrics 
--active cases, recoveries, deaths, or vaccination counts--were excluded, resulting in a 
focused set of 165 records. This step was necessary to ensure that each facility in the dataset 
provided full information, especially on cumulative Dose 2 of 2 and Dose 1 of 1 counts of 
vaccinations, crucial for modeling recovery and death rates in vaccinated individuals. 

3. Handling Missing Values: Missing data in the Dose 1 of 1 (Janssen) column were treated as 
zeroes, reflecting unreported vaccinations without altering otherwise complete records. 

4. Validation: While data were assumed accurate as public-use figures, logical checks ensured 
consistency—non-negative counts, realistic total counts for COVID-19 cases, and cross-
verification of cumulative vaccination data to flag any anomalies. These validations helped 
confirm the integrity of records, particularly for facilities with complete Dose 2 of 2 and 
Dose 1 of 1 vaccination data, essential for the modeling objectives. 

 

This process yielded a clean, validated dataset (File B) optimized for modeling purposes in the 
study, with a particular focus on facilities that provided comprehensive cumulative vaccination 
data. Using the prior activities, we proceed to Part A of mathematical modeling, which addresses 
baseline recovery and death rates. 
 
Aggregate data were used to model cumulative COVID-19 outcomes across VHA healthcare 
system, aligning with traditional compartmental models, specifically first-order differential 

equations, that focus on system-level trends. Such data capture population dynamics efficiently 
without requiring individual-level detail [9].  
 

2.6. Data Management and Analysis Protocol 
 
This study followed the Structured Data Management and Analysis Protocol (see Appendix A) to 

ensure accuracy and transparency in data handling. Data were ingested, cleaned, and validated to 
ensure consistency. Exploratory data analysis (EDA) was conducted to understand trends, and 
first-order differential equations were applied to model case progression. Both Dose 2 of 2 and 
Dose 1 of 1 data were combined to represent fully vaccinated individuals in Part B, ensuring 
comprehensive adjustments for cumulative vaccination impact. GenAI/ChatGPT Data Analyst 
was used to support data management and analysis, ensuring the process was efficient and 
reproducible, while avoiding black-box methodologies. 

 

2.7. Mathematical Modeling: Part A 
 
In Part A, first-order differential equations were used to model cumulative recovery and death 
outcomes based on active cases, recoveries, and deaths. This approach assumes constant rates for 

recovery and death [3], representing long-term averages rather than moment-to-moment changes,  
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and uses a homogeneous mixing assumption across the population--a common practice in 
simplified epidemiological models [9].  
 
These equation sestablish a baseline for modeling cumulative outcomes, specifically recovery 

and death rates, across the healthcare facilities: 
 

 Recovery Rate (𝜸𝟏):  
𝑑𝐴(𝑡)

𝑑𝑡
= −𝛾1𝐴(𝑡) 

 

where 𝛾1 is calculated as: 
 

𝛾1 =
𝐶

𝐴 + 𝐶 + 𝐷
 

 

 Death Rate (𝜸𝟐):  
 

𝑑𝐴(𝑡)

𝑑𝑡
= −𝛾2𝐴(𝑡) 

 

where 𝛾2 𝑖𝑠 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑠: 
 

𝛾2 =
𝐷

𝐴 + 𝐶 + 𝐷
 

 
These equations provide a baseline for understanding long-term cumulative outcomes at each 
facility without considering vaccination data. Solving these first-order differential equations 
yields exponential decay functions that model the decline in active cases over time due to 

recovery and death:  
 

 Recovery Solution 

 

𝐴recovery(𝑡) = 𝐴0 ⋅ 𝑒−γ1⋅𝑡  

 

 Death Solution 

 

𝐴death(𝑡) = 𝐴0 ⋅ 𝑒−γ2⋅𝑡  
 

where 𝐴0 is the initial active cases count (we used 𝐴0 = 10.03), t = days. 
 
These solutions model the decline in active cases over time, offering insights into long-term 
cumulative public health outcomes. Such insights can guide resource planning and forecasting in 

public health settings. Part B builds upon the baseline model by incorporating vaccination data to 
assess its impact on recovery and death rates. 
 

2.8. Mathematical Modeling: Part B 
 
Part B extends the model by incorporating cumulative vaccination data, focusing on individuals 

who received Pfizer/Moderna or Janssen, representing fully vaccinated individuals. The adjusted 
recovery and death rates are calculated as: 
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 Vaccination-Adjusted Recovery Rate:  
 

𝛾1(𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑, 𝑉fully vaccinated) = 𝛾1
0 × (1 + 𝛼

𝑉fully vaccinated

𝐴 + 𝐶 + 𝐷
) 

 
 

 Vaccination-Adjusted Death Rate:  

 

𝛾2(𝐴, 𝑉fully vaccinated) = 𝛾2
0 × (1 − 𝛽

𝑉fully vaccinated

𝐴 + 𝐶 + 𝐷
) 

 

Here, 𝛾1
0and𝛾2

0denote baseline cumulative recovery and death rates, respectively; 

𝑉𝑓𝑢𝑙𝑙𝑦 𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑒𝑑  represents the cumulative number of fully vaccinated individuals both 

Pfizer/Moderna (Dose 2 of 2) and Janssen (Dose 1 of 1).Parameters α=0.1 and β=0.05 reflect 
conservative estimates for vaccination impact, validated in prior studies [1,11]. These values can 
be adapted for specific populations or interventions. The adjustment factors, α and β, are used to 
model the proportional effects of vaccination on recovery and death rates, an approach commonly 
applied in models that account for modifying factors such as vaccination or co-infection [2,4]. 
 
As in Part A, the Solution for Decline in Active Cases approach may also apply here, adjusted, as 

needed, for use with the first-order differential equations to yield solutions for recovery or death 
trends. This consistent framework models case resolution dynamics across both parts. 
 
For a detailed step-by-step calculation of Part A and Part B, please refer to Appendix B where 
numerical examples demonstrate how the equations are applied. 

 

2.9. Consistency Check-a Sensitivity Analysis: Plan 
 
To evaluate the stability and robustness of the model, a Consistency Check was conducted by 
applying the same modeling procedures to a subsequent cumulative dataset of the same type but 
from a later date (File C; dated November 7, 2024; with data from 2020 to Present). The 
consistency check, a form of sensitivity analysis, evaluates the model’s robustness and stability. 

This step confirms that the model produces reliable results with updated data, supporting long-
term applicability. 
 
A “stable result” in this context is defined by three key criteria: 
 
1. Relative Consistency: Model outputs (e.g., recovery and death rates) should remain within a 

5-8% tolerance of the initial cumulative results, indicating consistent predictions. 

2. No Significant Change in Outcomes: Similar trends in cumulative outcomes indicate model 
alignment with long-term case resolution dynamics. 

3. Key Model Parameters Consistency: Cumulative recovery and death rates should show 
minimal deviation, supporting confidence in model reliability. This includes consistent 
integration of fully vaccinated data counts, with Dose 2 of 2 and Dose 1 of 1 used as the 
standard measure of full vaccination. 

 

2.10. Limitations 
 
Part A does not account for vaccination status, which may affect the accuracy of recovery and 
death rate estimates in highly vaccinated facilities. This limitation is mitigated by a flexible 
model structure, adaptable with additional vaccination data. In Part B, Dose 1 of 1 (Janssen) and 
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Dose 2 of 2 (Pfizer/Moderna) data were included to represent fully vaccinated individuals. The 
decision to include both full vaccination types reflects the most complete vaccination information 
available, providing more accurate estimates for fully vaccination populations. The model does 
not consider the time between doses, account for differences between vaccine types, or other 

facility-level factors. Additionally, the model assumes constant recovery and death rates, 
simplifying real-time application but may reduce precision over time. Future updates could 
incorporate these details for enhanced precision without sacrificing the model’s real-time 
application. For example, incorporating time-varying vaccination effects or regional demographic 
variations could improve the model’s accuracy. 
 
Our model assumes homogeneous mixing, meaning each individual is equally likely to interact 
with others, regardless of demographic or social differences. This simplifies calculations, making 

them practical for health system decision-making, which relies on aggregated trends rather than 
individual-level clinical details [9]. Although this assumption is standard in epidemiological 
modeling to keep the model practical, it permits actionable insights for resource allocations and 
strategic planning. While this assumption facilitates timely decision-making, it limits the ability 
to capture heterogeneity in populations with varied demographic or social structures.  

 

2.11. Ethical Considerations 
 
This project relied on publicly available data (or public-use data) posted by the Agency on the 
public-facing website, with compliance with HIPAA and other data privacy regulations. The use 
of publicly available data ensures compliance with ethical and privacy considerations but may 

introduce biases due to reporting inaccuracies. Since this model focuses on system-level decision-
making, future applications could integrate demographic and socioeconomic data to address 
health equity challenges and ensure interventions reach underserved populations. Such limitations 
are inherent in using real-world public health data. However, the structured data management 
activities described in Appendix A aim to mitigate their impact and ensure reliability for 
decision-making. No individuals were contacted to obtain the data used in this project. Ethical 
guidelines were followed in the use of GenAI tools to ensure transparency and accountability. 

 

3. SUMMARY OF FINDINGS 
 
Using a structured differential equation model and public-use datasets, this analysis establishes 
baseline recovery and death rates for COVID-19. In Part A, baseline recovery and death rates 
were modeled without vaccination, establishing a control for subsequent analysis. In Part B, the 
prior estimates were adjusted by incorporating cumulative vaccination data. This distinction helps 
assess COVID-19 impact and supports strategic health planning and public health decision-
making. 
 

Part A Results: Baseline Model 
 
The baseline model offers foundational insights into cumulative COVID-19 outcomes without 
vaccination influence, using active cases, recoveries, and deaths from across healthcare facilities. 
This model serves as a reference to quantify the vaccination effect in Part B, ensuring a clear 
basis for comparative evaluation. 
 

Estimated Recovery and Death Rates: 
 

The baseline model defines recovery  (𝛾1) and death (𝛾2) rates follow: 
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𝛾1 =
970,474

998,748
 ≈ 0.9717 ≈ 0.972 

 

𝛾2 =
26,619

998,748
 ≈ 0.0267 

 
First-order differential equations: 
The first-order differential equations for recovery and death rates are defined as: 
 

𝑑𝐴(𝑡)

𝑑𝑡
= −𝛾1𝐴(𝑡) 

 
𝑑𝐴(𝑡)

𝑑𝑡
= −𝛾2𝐴(𝑡) 

 
Solution for Decline in Active Cases: 
The first-order differential equations yield solutions for recovery and death trends: 
 

𝐴recovery(𝑡) = 𝐴0 ⋅ 𝑒−γ1⋅𝑡 

 
𝐴death(𝑡) = 𝐴0 ⋅ 𝑒−γ2⋅𝑡  

 
where A0 represents the initial count of active cases. See Appendix B for application. 
 
Interpretation: Collectively, the high recovery rate and the relatively low death rate indicate 
favorable outcomes for COVID-19 cases in the healthcare system. This suggests a resilient 
healthcare system, capable of managing surges during a communicable disease outbreak. These 
baseline rates enable us to assess the impact of vaccination on recovery and death rates, as 
interpreted in the following section. 

 
Part B Results: Baseline Model with Cumulative Vaccination Data 
 
Part B refines recovery and death rates by incorporating cumulative vaccination data. The 
vaccination-adjusted rates underscore a measurable improvement in recovery rates and reduction 
in death rates resulting from public health action. This adjustment highlights the measurable 
effects of vaccination on recovery and death trends in a healthcare population. 

 
Vaccination-Adjusted Recovery and Death Rates: With the inclusion of cumulative vaccination 
data, the vaccination-adjusted rates are calculated as follows for recovery (γ1,adjusted, fully vaccinated ) 

and death (γ2,adjusted, fully vaccinated ): 

 

𝛾1(𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑, 𝑉fully vaccinated) =  0.9717 ∗ (1 + 0.1 ∗  
5,497,748

998,748
) ≈ 1.5066 

𝛾2(𝐴, 𝑉fully vaccinated) = 0.0267 ∗  (1 − 0.05 ∗  
5,497,748

998,748
) ≈ 0.0193 

 
First-order differential equations for Adjusted Model: 
For the vaccination-adjusted model, the first-order differential equations are: 

 
𝑑𝐴recovery(𝑡)

𝑑𝑡
= −γ1,adjusted ⋅ 𝐴(𝑡) 

 



Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025 

17 

𝑑𝐴death(𝑡)

𝑑𝑡
= −γ2,adjusted ⋅ 𝐴(𝑡) 

 
Solution for Decline in Active Cases: 
 

Use the same mathematical forms as shown in Part A. See Appendix B for application. 
 
Interpretation: The adjustments illustrate that the inclusion of cumulative vaccination data led to a 
higher recovery rate and reduced death rate in the healthcare system. This aligns with broader 
public health findings where vaccination in a population contributes to reduced death rates from 
the communicable disease in a healthcare system with high vaccination rates. These adjusted 
rates highlight the effectiveness of vaccination as shown in the comparative analysis with 

baseline results. 
 
Comparative Analysis: Part A and Part B 
 
Comparing baseline (Part A) and vaccination data-adjusted (Part B) models reveals significant 
differences in recovery and death rates, providing a robust foundation for resource allocation, 
public health policy planning, and targeted public health intervention strategies (see Figure 1). 
This analysis highlights the model’s utility in supporting public health and healthcare 

administrators in health planning and optimizing resource distribution. 
 

 
 

Source: COVID-19 National Summary from the U.S. Department of Veterans Affairs (VA), Veterans 

Health Administration (VHA), dated October 22, 2024. 

 
Figure 1: Comparative Box Plot for Part A (Baseline) and Part B (Vaccination-Adjusted) 

 

In Part A, the baseline recovery rate (γ₁) of 0.972 and death rate (γ₂) of 0.0267 represent COVID-
19 case resolution in the unvaccinated population. In contrast, the adjusted model in Part B shows 
a recovery rate approximately 1.5066 and a death rate approximately by 0.0193, underscoring the 
cumulative benefits of vaccination. 
 
Again, the consistency check serves as a form of sensitivity analysis, as it evaluates the model’s 
robustness to variations in input datasets and confirms the stability of recovery and death 
rates.This comparison not only highlights vaccination effectiveness in enhancing recovery 

outcomes but also provides a clear basis for public health resource planning and healthcare 
prioritization in a population. The findings underscore the model’s decision-support utility, which 
is further explored in the next section. 
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4. DISCUSSION 
 
Considerations: For public health and healthcare system decision-makers 
 
The findings from Part A and Part B underscore the critical role of vaccination in managing 
COVID-19 outcomes within a public healthcare system. Baseline recovery rate in Part A and 
vaccination-adjusted rates in Part B show a strong capacity for recovery and reduced mortality 

within VHA healthcare system. This distinction highlights the values of mathematical modeling 
for this and future communicable disease outbreaks [12]: 
 

 Resource Allocation: Facilities with slower case resolution may require additional 
resources to manage the burden of disease at that location, while those with higher 
recovery rates could serve as examples of best-practice. 

 

 Vaccination Strategy Adjustment: Observing facility-level recovery rates in vaccinated  
populations can identify areas needing intensified vaccination outreach, particularly in 
regions with lower vaccination uptake. 

 

 Operational Planning: Projected timelines for case resolution assists public health and 

healthcare system administrators in forecasting healthcare workforce requirements, 
maintaining essential operations, and preparing for potential surges. 

 
The comparison (see Figure 1) reminds administrators how many lives can be spared from the 
burden of disease by having resource savailable to support clinical providers in delivering 
vaccination and treatment to protect the population from communicable disease while reducing 

the death rate in the population. While the homogeneous mixing assumption simplifies 
interactions for modeling purposes, it aligns with the model’s focus on providing actionable 
insights for health system decision-making rather than individual-level outcomes. Further 
adaptions could incorporate population heterogeneity and regional differences to improve 
applicability. Although this model relies on cumulative vaccination data, future adaptations could 
incorporate vaccination timing to improve dynamic modeling of population immunity. 
 

The public health data collected during the population during the public health emergency would 
be processed and analyzed using both statistical techniques for probabilistic trends and 
mathematical methods for precise articulation of mathematical values on an ongoing basis (see 
Appendix B). The enterprise-level model would be solved using public health data from a 
geographic area, making the results applicable to that region. The findings, combined with public 
health insights, could help decision-makers fine-tune efforts to support frontline clinical 
providers. Although beyond the scope of this project, future iterations of the model might 
incorporate geographic-specific trends to further refine predictions and support localized public 

health decision-making. 
 
Considerations: For the baseline model 
 
The baseline model assumes constant recovery and death rates, as commonly used in real-time 
applications to simplify decision-making when using a linear first-order differential equation. 
Such models are effective for real-time public health surveillance and decision-making due to 

their adaptability and simplicity [1,11].  While effective for rapid insights, this assumption may 
limit long-term precision. Future updates could incorporate time-dependent factors to increase 
accuracy while balancing computational demands [3,9]. The baseline model equations are 
revisited: 
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Model Setup: Active cases A(t), cumulative recoveries C, and deaths D are used to model disease 
progression. 
 

Equations: 
These equations model rate of decrease in active cases due to recovery and, separately, for deaths: 
 

𝑑𝐴(𝑡)/𝑑𝑡 = −γ1𝐴(𝑡) 

𝑑𝐴(𝑡)/𝑑𝑡 = −γ2𝐴(𝑡) 
 

where γ1 and γ2 represent the recovery rate and death rate, respectively. 
 
The minus sign is important and represents the decrease in active cases over time due to recovery 
and death [11]. This sign indicates a negative rate of change, aligning with real-world 
epidemiological dynamics where active cases are expected to decline as individuals either 
recover or pass away. Without the minus sign, these equations would incorrectly suggest an 
increase in active cases as recoveries or deaths occur, misrepresenting disease progression and 
undermining the utility of the model as a guide for public health decision-making [9]. 

 
Parameters: 
 

These constants, γ1 𝑎𝑛𝑑 γ2, are estimated based on the cumulative data: 

γ1 =
𝐶

𝐴 + 𝐶 + 𝐷
 

γ2 =
𝐷

𝐴 + 𝐶 + 𝐷
 

 

The terms C and D represent the cumulative recoveries and deaths, respectively. These provide 
long-term estimates of recovery and death rates without vaccination. 
 
Appendix A provides a structured data management protocol that includes data cleaning, data 
validation, and exploratory data analysis (EDA). By validating and cleaning data with this 
structured approach, the model can utilize accurate case counts, recovery rates, and death rates, 

which are essential for calculating parameters like −γ1 𝑎𝑛𝑑 − γ2.  The appendix highlights the 
careful handling of real-world data, ensuring that the model’s outputs would be reliable and 
actionable for public health decision-makers. 

 
Considerations: Consistency Check-a sensitivity analysis 
 
The model findings show that vaccination improves COVID-19 recovery rates and reduces 
mortality among those using the VHA system. Baseline recovery and death rates were previously 
reported; corresponding rates adjusted for vaccination were also documented earlier. 
 
To validate these findings, a consistency check was conducted using new, unseen data (see 

Methods section for the identification of File C). These data were cleaned following the same 
actions described in the Methods section. This check revealed the following descriptive summary 
of the new data file: 
 
Total Confirmed Cases: 1,000,174 
Active Cases: 1,528 
Recovered Cases (Convalescent): 971,976 

Known Deaths: 26,670 
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In Part A, the baseline recovery rate (γ1) = 0.9718 and the baseline death rate (γ2) = 0.0267. 
Furthermore, in Part B, the vaccination vaccination-adjusted rates were recovery rate (γ1) = 
1.5078 and death rate (γ2) = 0.0193. The comparison of rates is in the following (see Table): 
 

Table. Comparison of Rates: Baseline Model vs. Consistency Check 

 
 recovery rate (γ1) death rate (γ2) 

Part A 

File B: Initial Baseline Model 0.9717 0.0267 

File C: Consistency Check 0.9718 0.0267 

Part B 

File B: Initial Baseline Model 1.5066 0.0193 

File C: Consistency Check 1.5078 0.0193 

 

Note: The differences are within the pre-established tolerance. 

 
Appendix B illustrates the decline in active cases by solving the first-order differential equations 
for values of t, time in days. Calculations confirm that the recovery and death rates for both the 
Baseline Model and Consistency Check Model remain within acceptable tolerance, highlighting 
stability in numerical results. Figure 2 further illustrates this consistency visually, showing nearly 
identical trends in active case decline between the Baseline Model and the Consistency Check 
Model. This alignment in both numerical and graphical results reinforces the model’s reliability 
for real-time public health decision-making.  
 

 
 

Source: COVID-19 National Summary from the U.S. Department of Veterans Affairs (VA), Veterans 

Health Administration (VHA), dated: October 22, 2024 and November 7, 2024 

 
Figure 2: Comparative Decline in Active COVID-19 Cases: Initial Model vs. Consistency Check 
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In the dual line graph with subplots (Figure 2), the comparative decline in active COVID-19 
cases for both models is evident. This graph expands on the differential equation approach in 
Appendix B, where exponential decay function model the reduction of active cases through 
recovery and death rates. The logarithmic scale on the y-axis effectively captures this exponential 

decay. The recovery trend, indicated by blue lines, shows a steeper decline compared to the death 
trend, which is shown in red. This emphasizes the importance of recovery as a factor reducing the 
number of active cases in the healthcare system, even over a longer time period. 
 
The transparency of the methods and the deliberate use of first-order differential equations in this 
project facilitate adaptability to other public health and health system needs. A key strength of 
this approach lies in its reliance on regularly collected, high-quality aggregate data, which is 
commonly available in many public health settings. By leveraging such data and applying 

straightforward applied calculus, this model can be adapted to address similar decision-making 
needs in other public health settings. For instance, a large public health district managing a 
communicable disease outbreak with vaccination and case resolution data could utilize this model 
to support resource allocations, operational planning and public health intervention strategies. 
The combination of accessible methods, cumulative data, and replicable techniques provides a 
generalizable framework for public health decision-making. 
 

The use of first-order differential equations reflects a deliberate focus on accessibility and 
practicality. As a topic familiar to many professionals through applied calculus, these equations 
provide a transparent and effective framework for addressing real-time challenges in public 
health decision-making. This contrasts with more complex models, which often demand 
specialized expertise and computational resources, potentially limiting their application in health 
systems. The linear first-order differential equation approach applied here appears appropriate for 
public health and healthcare system decision-making. This suggests that the model could provide 

practical value for public health strategy and resource allocation, as summarized in the final 
section. 
 

5. CONCLUSION 
 
This project modeled COVID-19 case resolution within the Veterans Health Administration 
healthcare system using a first-order differential equations, providing a practical tool for public 
health decision-making. The model’s baseline recovery and death rates of 0.9717 and 0.0267, 
respectively. With vaccination data, these rates adjust to 1.5066 (recovery) and 0.0193 (death), 
underscoring the impact of vaccination. This model is a reliable tool for real-time public health 
decision-making, demonstrating that simplified differential equations can track and forecast 

outcomes in healthcare systems.   
 
For public health epidemiologists, the Methods section provides a structured approach for data 
management and model application, supporting mathematical modeling in epidemiology. 
Appendix A enhances transparency and reproducibility, offering a reliable framework tailored to 
the rigorous demands of public health epidemiology [13,14]. Appendix B offers a clear model of 
the decline in active cases over time, aiding in public health forecasting and strategic planning. 

The project underscores the utility of simplified, first-order differential equation models in 
epidemiology, offering reliable insights with minimal computational demands. Consistency 
checks confirm model stability across datasets, supporting its use in real-time public health 
applications. 
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Appendix A: Structured Data Management and Analysis Protocol 

 
1. Define the Objective 

 

 Purpose: Clearly define the purpose of the project or analysis. 

 Outcome Goals: Identify the specific outcomes you are aiming to achieve (e.g., understanding 

disease dynamics, improving resource allocation). 

 

2. Data Collection and Ingestion 

 

 Source Identification: Ensure that all data sources (e.g., ELR, vaccination reports, case data) are 

properly identified. 

 Data Ingestion: Define a structured process for data import. Use clear variable names and 

appropriate data formats. 
 

3. Data Cleaning and Preprocessing 

 

 Data Cleaning Process: Specify the steps taken to clean and prepare the data. 

 Data Structuring: Ensure that the data is structured in a logical, analyzable format (e.g., long or 

wide format). 

 

4. Exploratory Data Analysis (EDA) 
 

 Initial Data Exploration: Perform initial exploration to understand the distribution of key variables 

and any correlations. 

 Visualization: Create simple visualizations (histograms, bar charts, scatter plots) to identify trends 

and outliers. 

 

5. Define the Analytical Approach 
 

 Method Selection: Choose appropriate mathematical models or analytical techniques. 

 Algorithm Transparency: Clearly document any GenAI models, algorithms, or tools used. Avoid 

black-box approaches by explaining: How the algorithm processes the data and the rationale behind 

its selection. 

 

6. Data Analysis Execution 
 

 Step-by-Step Process: Break down the analysis into clear, understandable steps. 

 First-order differential equations: Apply first-order differential equations to model changes in 

active or convalescent cases over time, estimating rates like recovery and transmission based on the 

data. 

 

7. Validation and Quality Assurance 

 

 Verification of Results: Ensure the accuracy of the analysis by validating results at each step. 

 Cross-Check with Other Methods: Use alternative analytical methods to verify that results remain 

consistent and reliable. 

 

8. Interpretation of Results 
 

 Data-Driven Conclusions: Translate the analytical outcomes into clear, actionable conclusions. 

 Limitations and Assumptions: Document any assumptions made during analysis (e.g., constant 

recovery rate in first-order differential models). 
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9. Reporting and Visualization 

 

 Report Generation: Create structured reports with tables, visualizations, and narratives explaining 

the analysis. 

 Visualization of Findings: Ensure that all visualizations used (e.g., charts, graphs) are clear, 

labeled, and easy to interpret for stakeholders.  

 

Appendix B: Application-Solution for Decline in Active Cases 

 
This appendix applies first-order differential equations from the Methods Section to model the decline in 

active COVID-19 cases. Step-by-step solutions for both data files demonstrate exponential decay driven by 

recovery and death rates, supporting the findings in the main text. 

 

Part A: Baseline Model 

Recovery Rate:𝐴recovery(𝑡) = 𝐴0 ⋅ 𝑒−γ1⋅𝑡  

 
where A0 is initial count of cases (A0 = 10.03) ; t is days 
 
𝐴recovery(𝑡) = 𝐴0 ⋅ 𝑒−0.972(𝑡)     𝐴recovery(𝑡) = 𝐴0 ⋅ 𝑒−0.972(𝑡) 

 

File B: Initial Baseline Model    File C: Consistency Check Model 

t = 0: 𝐴0 ⋅ 𝑒−0.972(0) =  10.03    t = 0: 𝐴0 ⋅ 𝑒−0.972(0) =  10.03  

t = 1: 𝐴0 ⋅ 𝑒−0.972(1) =     3.79    t = 1: 𝐴0 ⋅ 𝑒−0.972(1) =     3.79 

t = 7: 𝐴0 ⋅ 𝑒−0.972(7) =     0.011    t = 7: 𝐴0 ⋅ 𝑒−0.972(7) =     0.011 

 

 

Death Rate:  𝐴death(𝑡) = 𝐴0 ⋅ 𝑒−γ2⋅𝑡 

 
𝐴death(𝑡) = 𝐴0 ⋅ 𝑒−0.027(𝑡)      𝐴death(𝑡) = 𝐴0 ⋅ 𝑒−0.027(𝑡)  
t = 0:  𝐴0 ⋅ 𝑒−0.027(0)  =  10.03    t = 0:  𝐴0 ⋅ 𝑒−0.027(0)  =  10.03 

t = 1:  𝐴0 ⋅ 𝑒−0.027(1)  =     9.76    t = 1:  𝐴0 ⋅ 𝑒−0.027(1)  =     9.76 

t = 7:  𝐴0 ⋅ 𝑒−0.027(7)  =     8.30    t = 7:  𝐴0 ⋅ 𝑒−0.027(7)  =     8.30 

 

Part B: Baseline Model with Cumulative Vaccination Data 

Recovery Rate: 𝐴recovery(𝑡) = 𝐴0 ⋅ 𝑒−γ1,𝑎𝑑𝑗⋅𝑡 

 
𝐴recovery(𝑡) = 𝐴0 ⋅ 𝑒−1.506(𝑡)      𝐴recovery(𝑡) = 𝐴0 ⋅ 𝑒−1.508(𝑡)  

 

File B: Initial Baseline Model    File C: Consistency Check Model 

t = 0: 𝐴0 ⋅ 𝑒−1.506(0) = 10.03    t = 0: 𝐴0 ⋅ 𝑒−1.508(0) = 10.03 

t = 1: 𝐴0 ⋅ 𝑒−1.506(1) =   2.224    t = 1: 𝐴0 ⋅ 𝑒−1.508(1) =   2.220 

t = 7: 𝐴0 ⋅ 𝑒−1.506(7) =   0.00026    t = 7: 𝐴0 ⋅ 𝑒−1.508(7) =   0.00026 

 

Death Rate: 𝐴death(𝑡) = 𝐴0 ⋅ 𝑒−γ2,𝑎𝑑𝑗⋅𝑡 
 

𝐴death(𝑡) = 𝐴0 ⋅ 𝑒−0.019(𝑡)     𝐴death(𝑡) = 𝐴0 ⋅ 𝑒−0.019(𝑡) 
 

t = 0: 𝐴0 ⋅ 𝑒−0.019(0)  =  10.03    t = 0: 𝐴0 ⋅ 𝑒−0.019(0)  =  10.03 

t = 1: 𝐴0 ⋅ 𝑒−0.019(1)  =    9.84    t = 1: 𝐴0 ⋅ 𝑒−0.019(1)  =    9.84 

t = 7: 𝐴0 ⋅ 𝑒−0.019(7)  =    8.78    t = 7: 𝐴0 ⋅ 𝑒−0.019(7)  =    8.78 
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