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ABSTRACT 

 
In this paper, we study Fermat's equation, 

 

𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛             (1) 
 

with 𝑛 > 2, 𝑥, 𝑦, 𝑧 non-zero positive integers. Let (𝑎, 𝑏, 𝑐) be a triple of non-zero positive integers relativity 

prime. Consider the equation (1) with prime exponent 𝑝 > 2. We establish the following results: 

 

- 𝑎𝑝 + 𝑏𝑝 ≠ (𝑏 + 1)𝑝.  This completes the general direct proof of Abel's conjecture only prove in 

the first case 𝑎𝑏(𝑏 + 1) ≢ 0 (𝑚𝑜𝑑 𝑝). 
- 𝑎2𝑝 + 𝑏2𝑝 ≠ 𝑐2𝑝. This completes the direct proof of Terjanian Theorem only prove in the first 

case 𝑎𝑏𝑐 ≢ 0 (𝑚𝑜𝑑 𝑝)). 
- 𝑎𝑛 + 𝑏𝑛 ≠ 𝑐𝑛with𝑛 is a non-prime integer.A new result almost absent in the literature of this 

problem. 

- If 𝑎𝑏 ≢ 0 (𝑚𝑜𝑑 𝑝) then𝑎𝑝 + 𝑏𝑝 ≠ 𝑐𝑝. This provides simultaneous Diophantine evidence for the 

first case oand the second case𝑐 ≡ 0 (𝑚𝑜𝑑 𝑝) of FLT. 

 
We analyse each of the evidence from the previous results and propose a ranking in order of increasing 

difficulty to establish them.  
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1. INTRODUCTION. 

 
In 1670 Fermat wrote that "It is impossible for a cube to be written as the sum of two cubes or for 
a fourth power to be written as the sum of two fourth powers or, in general, for any number equal 

to a power greater than two to be written as the sum of two powers" [1] p.1-2.Fermat claimed to 

have "woven" a wonderful proof of his problem. He gave the principle of is proof, the infinite 
descent, and illustrated it by proving the exponent 4 of his problem. For a little more than three 

centuries, Fermat's proposition, hitherto called Fermat's conjecture, had not yet been 

demonstrated in generality, even for the first case. However, non-obvious elementary proofs 

based on the principle of Fermat's infinite descent or not have been obtained for the small 
exponents of 3, 5, … ,100 (first case) and 3, …,14 (general case) [1] p. 64. Using computer tools, 
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these limits had been pushed to 57*109(Morishima and Gunderson, 1948) for the first case and to 

125 000 (Wagstaff,1976) for the general case [1] p.19. Apart from these results concerning 

precise values of the exponents or its programming, there are other partial results involving 
families of prime exponents and based on relatively elementary theories [2] p. 109-122,203-

211,360-361: 

 

-   In 1823, Sophie Germain and Legendre established the first case of FLT for exponents 

n less than 100. It also states that if n = p is prime number such that 2p + 1 is still 

prime, then the first case of FLT for exponent p is true.  

- In 1846, Kummer used the theory of cyclotomic fields to obtain some very remarkable 

results: The impossibility of Fermat's equation for regular prime number n and deduce 

that the first case of FLT failsfor all prime exponents less than 100 except 37, 59 and 67. 

- In 1977, Terjanian proved the first case of even exponent of FLT. He considered𝑥2𝑝 +
𝑦2𝑝 = 𝑧2𝑝 with pa prime and he used the law of reciprocity to prove an important lemma 

involving quotients 
𝑧𝑝−𝑦𝑝

𝑧−𝑦
,
𝑧𝑞−𝑦𝑞

𝑧−𝑦
 and Jacobi's symbols. 

 

Despite these results, general proof was still slow to be found.It was in 1985 that Andrews Wiles 
provided the first recognized proof by the scientific community of Fermat's conjecture, which 

would become the Fermat-Wiles theorem [2] [3]. In 2023, Kimou K. P. took the decisive step by 

introducing Kimou 's divisors for a hypothetical solution of xn + yn = zn with  n = 4, p, 2pand 

proposing new proofs of FLT for exponent 4, the first case of the Abel conjecture, and proved 
some properties related to Fermat problem [4]-[15]. Then, he proved new fundamental and 

decisive results for this problem: A crucial relationship and a fundamental theorem that will 

allow him to reach the "Heart" of the problem [10]-[11]. Then, in oral communication, he used 

them to prove the first and second cases 𝑧 ≡ 0 (𝑚𝑜𝑑𝑝)  of FLT [15].A solution (x, y, z) to the 

equation (1) will be called primitive if gcd(x, y, z) = 1. This solution will be called trivial if 

xyz = 0. Let n > 2 a natural number. Consider the set Fnof triples of non-trivial positive integers 

solution to equation (1) define as follow: 
 

𝐹𝑛 = {(𝑥, 𝑦, 𝑧) ∈ ℕ
∗3, 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛}. 

 
The objective of this paper is to give a Diophantine proof for following main results. 

 

Theorem 1.1. Let p > 2 be a primenumber and (a, b, c) be a triple of non-zero positive integers 

relatively prime. Then. 
 

𝑐 − 𝑏 = 1 ⟹ 𝑎𝑝 + 𝑏𝑝 ≠ 𝑐𝑝 . 
 

Theorem 1.2. Let pbe a prime number. Then, 

 

𝑝 > 2 ⟹ 𝐹2𝑝 = ∅. 

 

Theorem 1.3. Let nbe a nonprimepositive integer. Then, 

 

𝑛 > 2 ⟹ 𝐹𝑛 = ∅. 
 

Theorem 1.4. Let p > 2be a primenumber and let (a, b, c) be a triple of non-null positive 
integers relatively prime. Then 

 

𝑎𝑏 ≢ 0 (𝑚𝑜𝑑 𝑝) ⟹ 𝑎𝑝 + 𝑏𝑝 ≠ 𝑐𝑝 . 
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We present our work by organizing it as follows. Section 2 preliminaries, we recall the theorems 

of principal Kimou’s divisors and Diophantine quotients and remainders, the Fundamental 
Relation of the Fermat equation and its corollary. In Section 3, we prove our main results. In 

section 4, we give a classification in increasing order of the difficulty of the Fermat problems 

studied here. In section 5, we conclude this work with a conclusion with perspectives. 

 

2. PRELIMINARIES 
 
In this section we define commonly used terms, state and prove theorems and lemmas necessary 

for the proofs of our main results. 

 

Definitions 2.1. 

 

1. Diophantine proof is direct proof based on the natural integers, using only the properties 

of addition, multiplication, Euclidean division, the order relation in ℕ and the 
fundamental theorem of arithmetic to analyze a Diophantine equation.  

2. A hypothetical solution (𝑎, 𝑏, 𝑐)of Fermat's equation is primitive if gcd(𝑎, 𝑏, 𝑐) = 1. 

 

Remark 2.1. 

 

1. In our research on FLT, we use classical tools such as Newton's binomial formula, 

factorization, the fundamental theorem of arithmetic (implicitly), Fermat’s little theorem 
and intensively modular arithmetic. We have developed some very effective new tools 

for analyzing the Fermat equation. These tools are all Diophantine [Definition 2.1]. 

2. If (𝑎, 𝑏, 𝑐) is a non-trivial primitive solution of Fermat equation, then: 
 

gcd(𝑎, 𝑏) = gcd(𝑎, 𝑐) = gcd(𝑏, 𝑐) = 1. 
 

Notation 2.1.  

 

1. We use the symbol ◻to represent the empty clause. It is the proposition that is always 

false or absurd. 

2. Let 𝑝 > 2 a prime number, (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 such that 𝑎 < 𝑏 < 𝑐. Let 𝑇𝑝(𝑥, 𝑦) be the 

quantity defined by 

𝑇𝑝(𝑥, 𝑦) =
𝑦𝑝 − 𝑥𝑝

𝑦 − 𝑥
with 𝑥, 𝑦 ∈ {𝑏,±𝑎, 𝑐}, 𝑦 > 𝑥. 

𝑇𝑝(𝑥, 𝑦)is a positive integer. 

 

Theorem 2.1. (Fermat’s little theorem). If 𝑝 is a prime number, then for any integer 𝑎, where 𝑝 

does not divide 𝑎 (𝑎 ≢ 0 (𝑚𝑜𝑑 𝑝)) the following holds 

 

𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝) 
 

Proof. See [12] p.33 

 

Theorem2.2.Let 𝑛 > 2 be an odd integer and let 𝑝 > 2be a prime number. Then  

 

𝐹𝑝 = ∅ ⟹ 𝐹𝑛 = ∅. 

 

Proof. Proving Theorem 2.2. is equivalent to proving that if 𝐹𝑛 ≠ ∅ then 𝐹𝑝 ≠ ∅. We proceed by 

contraposed reasoning. Let us consider that 𝐹𝑛 ≠ ∅. We distinguish two cases. 
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On the one hand, if 𝑛 = 2𝑙with𝑙 ≥ 2.  Consider the case 𝑙 = 2. In that case 𝑛 = 4 and equation  

(1) becomes 

 

𝑥4 + 𝑦4 = 𝑧4 . 
 

This is Fermat's biquadraticequation and we all know that it does not admit non-trivial solutions 
[2] p.13 (2C). 

  

Consider the case where 𝑙 > 2 then 𝑛 = 2𝑙 ≡ 0 (𝑚𝑜𝑑 4). Therefore, there exists a natural 

number k such that 𝑛 = 4𝑘. Equation (1) becomes 𝑥4𝑘 + 𝑦4𝑘 = 𝑧4𝑘 . As a result 

 

𝑥4𝑘 + 𝑦4𝑘 = 𝑧4𝑘 ⟹ (𝑥𝑘)
4
+ (𝑦𝑘)

4
= (𝑧𝑘)

4
⟹◻. 

 

Hence 𝑛 ≠ 2𝑙 , with 𝑙 > 2. In short 𝑛 ≠ 2𝑙 with 𝑙 ≥ 2. 
 

On the other hand, if 𝑛 ≠ 2𝑙 then 𝑛 admits a prime factor 𝑞 > 2. There exist𝑘 ≥ 2such as 𝑛 =
𝑘𝑞. Then  

 

𝐹𝑛 ≠ ∅ ⟹ ∃(𝑎, 𝑏, 𝑐) ∈ 𝐹𝑛, 𝑎𝑏𝑐 ≠ 1 

⟹ (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑘𝑞 ⟹ 𝑎𝑘𝑞 + 𝑏𝑘𝑞 = 𝑐𝑘𝑞 

⟹ (𝑎𝑘)
𝑞
+ (𝑏𝑘)

𝑞
= (𝑐𝑘)

𝑞
 𝑤𝑖𝑡ℎ 𝑞 > 2 𝑎 𝑝𝑟𝑖𝑚𝑒 

⟹ (𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘) ∈ 𝐹𝑞 , 𝑎
𝑘𝑏𝑘𝑐𝑘 ≠ 0   

⟹ 𝐹𝑞 ≠ ∅.  

 

Hence if 𝐹𝑝 = ∅ then 𝐹𝑛 = ∅. 

 

Lemma 2.1. Let 𝑝 > 2be a prime number and let (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 such that 𝑏 > 𝑎. Consider 

(𝑞1, 𝑞2) and (𝑟1, 𝑟2) the quotients and the remainders of the Euclidean division of 𝑏  and 𝑐 by 𝑎: 

𝑏 = 𝑎𝑞1 + 𝑟1 and 𝑐 = 𝑎𝑞2 + 𝑟2. Then, 

 

𝑏 = 𝑎 + 1 ⟹ 𝑞1 = 𝑞2 = 1.   
Proof. See [8]. 

 

Lemma 2.2. Let 𝑝 > 2be a prime number and let (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 be a triple of primitive solution 

such that 𝑏 > 𝑎. Consider 𝑐 = 𝑎𝑞2+𝑟2 𝑤𝑖𝑡ℎ 𝑟2 < 𝑎and 𝑒 = gcd(𝑏, 𝑐 − 𝑎). Then, 

𝑞2 = 1 ⟹ {
𝑟2 =

𝑒𝑝

𝑝
if 𝑏 ≡ 0 (𝑚𝑜𝑑 𝑝)

𝑟2 = 𝑒
𝑝otherwise.

. 

Proof.See [8]. 

 

Theorem 2.3. (Kimou-Fermat). Let 𝑝 > 2be a prime number and let (𝑎, 𝑏, 𝑐) be a triple of 

positive integers relativity prime such that 𝑏 > 𝑎. Then, 

 

(𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 ⟹ {
𝑏 − 𝑎 = 1 if 𝑐 ≡ 1 (𝑚𝑜𝑑 2)
𝑏 − 𝑎 = 2 otherwise.

. 

 

Proof. See [10]. 

 

Lemma 2.3. Let 𝑝 > 2be a prime number and let (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 be a triple of primitive solution 

such that 𝑏 > 𝑎. Then 
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𝑏 − 𝑎 = 1 ⟺  𝑐 ≡ 1 (𝑚𝑜𝑑 2). 
 
Proof. According to the assumptions of the previous lemma, we have:  

 

On the one hand, let us show that if𝑏 − 𝑎 = 1 then𝑐 ≡ 1 (𝑚𝑜𝑑 2). We have: 
 

𝑏 − 𝑎 = 1 ⟹ 𝑏 = 𝑎 + 1 

⟹𝑎, 𝑏 are opposite parity 
⟹ 𝑐 is odd because gcd(𝑎, 𝑏, 𝑐) = 1. 
 

Reciprocally, let us show that if𝑐 ≡ 1 (𝑚𝑜𝑑 2)then 𝑏 − 𝑎 = 1. We proceeded by reasoning by 

absurd: 

𝑐 ≡ 1 (𝑚𝑜𝑑 2) , 𝑏 − 𝑎 = 2 ⟹ 𝑏, 𝑎 have the same parity 

⟹ 𝑏, 𝑎 are odd because gcd(𝑎, 𝑏, 𝑐) = 1.  
⟹ 𝑐is even 

⟹◻. 
Hence 𝑏 − 𝑎 = 1.  

 

Lemma 2.4. Let 𝑝 > 2be a prime and let (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝be a triple of primitive solution such that 

𝑏 > 𝑎. Then 

𝑏 − 𝑎 = 2 ⟺  𝑐 ≡ 0 (𝑚𝑜𝑑 2). 
 

Proof.Can be deduced by contraposition of the previous lemma.  

 

Lemma 2.5. Let 𝑝 > 2be a prime number and let(𝑎, 𝑏, 𝑐) be a triple of relativity primeintegers.  
 

Then 

(𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 ⟹

{
  
 

  
 𝑐 − 𝑏 =

𝑑𝑝

gcd(𝑑, 𝑝)
, 𝑇𝑝(𝑏, 𝑐) = gcd(𝑑, 𝑝)𝛼

𝑝 , 𝑎 = 𝑑𝛼

𝑐 − 𝑎 =
𝑒𝑝

gcd(𝑒, 𝑝)
, 𝑇𝑝(𝑎, 𝑐) = gcd(𝑒, 𝑝)𝛽

𝑝 , 𝑏 = 𝑒𝛽

𝑎 + 𝑏 =
𝑓𝑝

gcd(𝑓, 𝑝)
, 𝑇𝑝(−𝑎, 𝑏) = gcd(𝑓, 𝑝)𝛾

𝑝 , 𝑐 = 𝑓𝛾.

 

 

where the sextuple (𝑑, 𝑒, 𝑓, 𝛼, 𝛽, 𝛾) of positive integers is the Kimou divisors of (𝑎, 𝑏, 𝑐). 
 

Proof. See [7], [9]. 

 

Remark 2.2. 

 

1. The triple (𝑑, 𝑒, 𝑓) of non-zero positive integers is called Kimou primaries divisors of 

(𝑎, 𝑏, 𝑐) and defined by follow: 

𝑑 = gcd(𝑎, 𝑐 − 𝑏) , 𝑒 = gcd(𝑏, 𝑐 − 𝑎) 𝑎𝑛𝑑 𝑓 = gcd(𝑐, 𝑎 + 𝑏). 
2. Lemma 2.5 is the concise and unified version of Lemmas 2.4, 2.5 and Remarks 2.3,2.4. 

in [8] pp. 87-89.  

3. If (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 then 

 



Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025 

6 

{

gcd(𝑑, 𝑝) = gcd(𝑒, 𝑝) = gcd(𝑓, 𝑝) = 1 𝑖𝑓 𝑎𝑏𝑐 ≢ 0 (𝑚𝑜𝑑 𝑝) 
gcd(𝑑, 𝑝) = 𝑝, gcd(𝑒, 𝑝) = gcd(𝑓, 𝑝) = 1 𝑖𝑓 𝑎 ≡ 0 (𝑚𝑜𝑑 𝑝)

gcd(𝑒, 𝑝) = 𝑝, gcd(𝑑, 𝑝) = gcd(𝑓, 𝑝) = 1 𝑖𝑓 𝑏 ≡ 0 (𝑚𝑜𝑑 𝑝)

gcd(𝑓, 𝑝) = 𝑝, gcd(𝑑, 𝑝) = gcd(𝑒, 𝑝) = 1 𝑖𝑓 𝑐 ≡ 0 (𝑚𝑜𝑑 𝑝).

 

 

Lemma 2.6. Let 𝑝 > 2be a prime number, let (𝑎, 𝑏, 𝑐) be a triple of relativity prime integers. 

Then 

 
(𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 ⟹ gcd(𝑑, 𝛼) = gcd(𝑒, 𝛽) = gcd(𝑓, 𝛾) = 1 

 

where the sextuple (𝑑, 𝑒, 𝑓, 𝛼, 𝛽, 𝛾) of positive integers is the Kimou’s divisors of (𝑎, 𝑏, 𝑐) 
[Lemma 2.5]. 

 

 

Proof.Under the assumptions of the previous lemma, we have: 

 

(𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 ⟹ {

𝑑 = gcd(𝑎, 𝑐 − 𝑏)

𝑒 = gcd(𝑏, 𝑐 − 𝑎)

𝑓 = gcd(𝑐, 𝑎 + 𝑏)
[𝑅𝑒𝑚𝑎𝑟𝑘 2.2. ][7]𝑝. 84  

               ⟹

{
  
 

 
 
 𝑑 = gcd(𝑎,

𝑑𝑝

gcd(𝑑, 𝑝)
)

𝑒 = gcd(𝑏,
𝑒𝑝

gcd(𝑒, 𝑝)
)

𝑓 = gcd(𝑐,
𝑓𝑝

gcd(𝑓, 𝑝)
)

    [𝐿𝑒𝑚𝑚𝑎 2.5] 

              ⟹

{
  
 

 
 
 𝑑 = gcd(𝑑𝛼,

𝑑𝑝

gcd(𝑑, 𝑝)
)

𝑒 = gcd(𝑒𝛽,
𝑒𝑝

gcd(𝑒, 𝑝)
)

𝑓 = gcd(𝑓𝛾,
𝑓𝑝

gcd(𝑓, 𝑝)
)

 [𝐿𝑒𝑚𝑚𝑎 2.5] 

                     ⟹

{
 
 
 

 
 
 1 = gcd(𝛼,

𝑑𝑝−1

gcd(𝑑, 𝑝)
)

1 = gcd(𝛽,
𝑒𝑝−1

gcd(𝑒, 𝑝)
)

1 = gcd(𝛾,
𝑓𝑝−1

gcd(𝑓, 𝑝)
)

⟹ {

1 = gcd(𝛼, 𝑑)

1 = gcd(𝛽, 𝑒)

1 = gcd(𝛾, 𝑓).

 

 

Lemma 2.7. Let 𝑝 > 2be a prime number and let (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 be a triple of primitive solution. 

Then 

 

𝑎𝑏𝑐 ≢ 0 (𝑚𝑜𝑑 𝑝) ⟹ (𝑐 − 𝑏)(𝑐 − 𝑎)(𝑎 + 𝑏) ≢ 0 (𝑚𝑜𝑑 𝑝) 
 

Proof. Let 𝑝 > 2be a prime number and let (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 be a triple of non-zero primitive 

positive integers. Consider the sextuple (𝑑, 𝑒, 𝑓, 𝛼, 𝛽, 𝛾)of positive integers, its Kimou divisors. 

We have 

 

𝑎𝑏𝑐 ≢ 0 (𝑚𝑜𝑑 𝑝) ⟹ 𝑑𝑒𝑓 ≢ 0 (𝑚𝑜𝑑 𝑝)otherwise 𝑎𝑏𝑐 ≡ 0 (𝑚𝑜𝑑 𝑝) 
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⟹𝑑 ≢ 0 (𝑚𝑜𝑑 𝑝), 𝑒 ≢ 0 (𝑚𝑜𝑑 𝑝), 𝑓 ≢ 0 (𝑚𝑜𝑑 𝑝) 
⟹ 𝑑𝑝 ≢ 0 (𝑚𝑜𝑑 𝑝), 𝑒𝑝 ≢ 0 (𝑚𝑜𝑑 𝑝), 𝑓𝑝 ≢ 0 (𝑚𝑜𝑑 𝑝) 

⟹ 𝑐 − 𝑏 ≢ 0 (𝑚𝑜𝑑 𝑝), 𝑐 − 𝑎 ≢ 0 (𝑚𝑜𝑑 𝑝), 𝑎 + 𝑏 ≢ 0 (𝑚𝑜𝑑 𝑝) [𝐿𝑒𝑚𝑚𝑎 2.5. ] 
 

Lemma 2.8. Let 𝑝 > 2be a prime number and (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 be a triple of primitive solution. 

Consider the triple (𝛼, 𝛽, 𝛾) theauxiliary Kimou divisors of (𝑎, 𝑏, 𝑐).Then 

 

𝛼 ≡ 𝛽 ≡ 𝛾 ≡ 1 (𝑚𝑜𝑑 𝑝) 
 

Proof. Let's deal with the first case of this problem. We have 

 

𝑎𝑏𝑐 ≢ 0 (𝑚𝑜𝑑 𝑝)⟹ 𝑇𝑝(𝑎, 𝑐) =
𝑐𝑝 − 𝑎𝑝

𝑐 − 𝑎
 

                            ⟹ 𝑇𝑝(𝑎, 𝑐) ≡
𝑐𝑝 − 𝑎𝑝

𝑐 − 𝑎
(𝑚𝑜𝑑 𝑝)[𝐿𝑒𝑚𝑚𝑎 2.7. ] 

                          ⟹ 𝑇𝑝(𝑎, 𝑐) ≡
𝑐 − 𝑎

𝑐 − 𝑎
(𝑚𝑜𝑑 𝑝)  [𝑇ℎ𝑒𝑜𝑟𝑒𝑚 2.1. ] 

  ⟹ 𝑇𝑝(𝑎, 𝑐) ≡ 1 (𝑚𝑜𝑑 𝑝) 

⟹ 𝛼𝑝 ≡ 1 (𝑚𝑜𝑑 𝑝) [𝐿𝑒𝑚𝑚𝑎 2.5] 
⟹ 𝛼 ≡ 1 (𝑚𝑜𝑑 𝑝)  [𝑇ℎ𝑒𝑜𝑟𝑒𝑚 2.1. ] 

 

The same approach is followed to show that 𝛽 ≡ 𝛾 ≡ 1 (𝑚𝑜𝑑 𝑝). 
 

In the second case, let us illustrate the evidence on the case 𝑎 ≡ 0 (𝑚𝑜𝑑 𝑝). On the one hand, 

 

𝑎 ≡ 0 (𝑚𝑜𝑑 𝑝) ⟹ 𝑎𝑝 + 𝑏𝑝 = 𝑐𝑝 

⟹ 𝑏𝑝 ≡ 𝑐𝑝  (𝑚𝑜𝑑 𝑝𝑝) ⟹ 𝑏 ≡ 𝑐 (𝑚𝑜𝑑 𝑝𝑝−1) 
⟹ 𝑏 ≡ 𝑐 (𝑚𝑜𝑑 𝑝2) 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑝 ≥ 3) 

On the other hand, 

 

𝑎 ≡ 0 (𝑚𝑜𝑑 𝑝) ⟹ 𝑇𝑝(𝑏, 𝑐) = 𝑝𝛼
𝑝 [𝐿𝑒𝑚𝑚𝑎 2.5, 𝑅𝑒𝑚𝑎𝑟𝑘 2.2. ] 

⟹𝑇𝑝(𝑏, 𝑐) ≡ 𝑝𝛼
𝑝 (𝑚𝑜𝑑 𝑝2) 

⟹ 𝑝𝑏𝑝−1 ≡ 𝑝𝛼𝑝(𝑚𝑜𝑑 𝑝2), 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑟𝑒𝑠𝑢𝑙𝑡 
⟹ 𝑏𝑝−1 ≡ 𝛼𝑝 (𝑚𝑜𝑑 𝑝) 

⟹1 ≡ 𝛼𝑝(𝑚𝑜𝑑 𝑝)  [𝑇ℎ𝑒𝑜𝑟𝑒𝑚 2.1] 
 

⟹ 1 ≡ 𝛼 (𝑚𝑜𝑑 𝑝)     [𝑇ℎ𝑒𝑜𝑟𝑒𝑚 2.1]. 
 

A similar approach is followed to deal with cases 𝑏𝑐 ≡ 0 (𝑚𝑜𝑑 𝑝). 
 

Remark 2.3. Let 𝑝 > 2be a prime number and let (𝑎, 𝑏, 𝑐)be a triple of relativity prime integers. 

Then 

 
(𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 ⟹ 𝛼 ≥ 𝑝, 𝛽 ≥ 𝑝, 𝛾 ≥ 𝑝 ⟹ 𝛼 > 2, 𝛽 > 2, 𝛾 > 2. 

 

3. PROOF OF OUR MAIN RESULTS 
 

3.1. Proof of Theorem 1.1.  
 

Conjecture (Abel). Let 𝑝 > 2be a prime number and let (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 be a triple of primitive 

solution. Then none of the 𝑎, 𝑏and𝑐 is the power of a prime number.  
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The cases where 𝑏 and 𝑐 are powers of a prime number have been proved by Moller [14]. He also 

proved that if 𝑎 is a prime power, then 𝑐 − 𝑏 = 1 [13], [14].The first case of this conjecture was 
proved by Abel himself. New evidence was given by Kimou P. in 2023 [6]. The second case has 

yet to receive direct proof. That's precisely the aim of this subsection.In what follows, we prove 

this conjecture in full.  

 

Lemma 3.1. Let 𝑝 > 2be a prime and let (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝be a triple of primitive solution such that 

𝑎𝑏𝑐 ≡ 0 (𝑚𝑜𝑑 𝑝). If ∀𝑥 ∈ {𝑎, 𝑏, 𝑐}, ∄(𝜋,𝑚) ∈ ℕ∗2with 𝜋is a prime number and 𝑥 = 𝜋𝑚then 

 

𝑥 ≢ 0 (𝑚𝑜𝑑 𝑝). 
 

Proof.Under the assumptions of the previous lemma, we will proceed by absurdity, assuming that 

𝑥 ≡ 0 (𝑚𝑜𝑑 𝑝). 
 
On the one hand, 

𝑏 = 𝜋𝑚 , 𝑏 ≡ 0 (𝑚𝑜𝑑 𝑝) ⟹ 𝜋𝑚 ≡ 0 (𝑚𝑜𝑑 𝑝) 
⟹ 𝜋 ≡ 0 (𝑚𝑜𝑑 𝑝) 

⟹𝜋 = 𝑝 𝑜𝑟 𝑝 = 1 ⟹ 𝜋 = 𝑝. 
 

On the other hand, according to the above, we have: 

 

         𝑏 = 𝜋𝑚 , 𝑏 ≡ 0 (𝑚𝑜𝑑 𝑝) ⟹ 𝑒𝛽 = 𝑝𝑚             [𝐿𝑒𝑚𝑚𝑎 2.5] 
⟹ 𝑒𝛽 ≡ 0 (𝑚𝑜𝑑 𝑝) 

⟹ 𝑒 ≡ 0 (𝑚𝑜𝑑 𝑝)  [𝐿𝑒𝑚𝑚𝑎 2.8]) 
⟹ 𝑒 ≡ 0 (𝑚𝑜𝑑 𝑝𝑚) 

⟹ 𝑒 = 𝑘𝑏 = 𝑏 𝑤𝑖𝑡ℎ 𝑘 ≥ 1 𝑖𝑠 𝑎 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 
⟹ 𝑒 = 𝑏, 𝛽 = 1 

⟹◻ [𝑅𝑒𝑚𝑎𝑟𝑘 2.3]. 
 

Hence𝑏 ≢ 0 (𝑚𝑜𝑑 𝑝).We proceed in the same way with 𝑎 and 𝑐. 

 

Remark 3.1. When 𝑏 is even, it is treated as follows.If 𝑏 is even, then 𝑏 = 2𝑚 and consequently  

𝑏 ≢ 0 (𝑚𝑜𝑑𝑝). According to lemma 3.1. we treat in the following the triplets (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 such 

that 
 

𝑏𝑐 ≢ 0 (𝑚𝑜𝑑𝑝) with 𝑐 = 𝑏 + 1. 
 

Lemma 3.2. Let 𝑝 > 2 be a prime and let (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 be a triple of primitive solution such that  

𝑒 = gcd(𝑏, 𝑐 − 𝑎) and 𝑏 = 𝑒𝛽. Then  

 

𝛽 > 𝑒𝑝−1. 
Proof. 

(𝑎, 𝑏, 𝑐) ∈ 𝐹 ⟹ 𝑎 + 𝑏 − 𝑐 = 𝑏 − (𝑐 − 𝑎) = 𝑒𝛽 − 𝑒𝑝 

⟹𝑎 + 𝑏 − 𝑐 = 𝑒(𝛽 − 𝑒𝑝−1) 
⟹ 𝛽− 𝑒𝑝−1 > 0⟹ 𝛽 > 𝑒𝑝−1. 

 

Lemma 3.3. Let 𝑝 > 2 be a prime and let (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 be a triple of primitive solution such that  

𝑒 = gcd(𝑏, 𝑐 − 𝑎) and 𝑏 = 𝑒𝛽. Then  
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{
 
 

 
 𝛾 >

𝑓𝑝−1

2𝑝
 𝑖𝑓 𝑐 ≡ 0 (𝑚𝑜𝑑 𝑝)

𝛾 >
𝑓𝑝−1

2𝑝
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

 

Proof. Consider the assumptions of the previous lemma and (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 a triple of primitive 

solution. On the one hand 

 

𝑐 ≡ 0 (𝑚𝑜𝑑 𝑝) ⟹ 2𝑐 = 𝑑𝑝 + 𝑒𝑝 +
𝑓𝑝

𝑝
 [7] 

    ⟹ 2𝑐 >
𝑓𝑝

𝑝
 

 ⟹ 2𝑓𝛾 >
𝑓𝑝

𝑝
⟹ 𝛾 >

𝑓𝑝−1

2𝑝
. 

 

On the other hand 
 

𝑐 ≢ 0 (𝑚𝑜𝑑 𝑝) ⟹ 2𝑐 =
𝑑𝑝

𝑝
+ 𝑒𝑝 + 𝑓𝑝𝑜𝑟 2𝑐 = 𝑑𝑝 +

𝑒𝑝

𝑝
+ 𝑓𝑝  [7] 

⟹ 2𝑐 > 𝑓𝑝  

    ⟹ 2𝑓𝛾 > 𝑓𝑝 ⟹ 𝛾 >
𝑓𝑝−1

2
.                      

 

Remark. If 𝑐 ≡ 0 (𝑚𝑜𝑑 𝑝) then 𝑐 ≡ 0 (𝑚𝑜𝑑 𝑝2)[2] p. Hence 𝑓 ≡ 0 (𝑚𝑜𝑑𝑝2)as a result: 

𝑓 ≥ 𝑝2 > 4. When𝑐 ≢ 0 (𝑚𝑜𝑑𝑝)let consider the following case: 

 

𝑏 ≡ 0 (𝑚𝑜𝑑 𝑝) ⟹ 𝑐 ≡ 𝑎 (𝑚𝑜𝑑 𝑝2) ⟹ 𝑓 ≡ 𝑑 (𝑚𝑜𝑑 𝑝2) 
⟹ 𝑓 = 𝑑 + 𝑘𝑝2  ⟹ 𝑓 > 𝑝2 

 

The same procedure is followed for the other cases. 

 

Lemma 3.4. Let 𝑝 > 2be a prime and let (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝. Consider 𝑒 = gcd(𝑏, 𝑐 − 𝑎). Then 

 

 𝑏 ≢ 0 (𝑚𝑜𝑑 𝑝) ⟹ ∄(𝜋,𝑚) ∈ ℕ∗2, 𝑏 = 𝜋𝑚  
with 𝜋 is prime number. 

 

Proof. Let 𝑏 ≢ 0 (𝑚𝑜𝑑 𝑝). We proceed by reasoning by the absurd. Let’s assume that (𝑎, 𝑏, 𝑐) ∈
𝐹𝑝 𝑎𝑛𝑑𝑏 = 𝜋

𝑚 .We have: 

 

 𝑏 = 𝜋𝑚 ⟹ 𝑒𝛽 = 𝜋𝑚   [𝐿𝑒𝑚𝑚𝑎 2.5]  
⟹ 𝑒 = 1 𝑐𝑎𝑟 𝛽 > 𝑒 [𝐿𝑒𝑚𝑚𝑎 3.2] 

⟹ 𝑒𝑝 = 1⟹ 𝑐 − 𝑎 = 1 [𝐿𝑒𝑚𝑚𝑎 2.5] 
⟹ 𝑐 = 𝑎 + 1 

⟹◻because 𝑎 < 𝑏 < 𝑐. 
 

Hence ∄(𝜋,𝑚) ∈ ℕ∗2, 𝑏 = 𝜋𝑚 with 𝜋 a prime number. 

 

Lemma3.5. Let 𝑝 > 2be a prime and let (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 be a triple of primitive solution. Then 

 

𝑐 ≢ 0 (𝑚𝑜𝑑 𝑝) ⟹ ∄(𝜋, 𝑚) ∈ ℕ∗2, 𝑐 = 𝜋𝑚with π is a prime 
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Proof. Let (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 and 𝑐 ≢ 0 (𝑚𝑜𝑑 𝑝). We reason from the absurd by supposing that  𝑐 =

𝜋𝑚 .We have 
(𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝, 𝑐 ≢ 0 (𝑚𝑜𝑑 𝑝) ⟹ 𝑓𝛾 = 𝜋𝑚 

⟹ 𝑓 = 1 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝛾 > 𝑓 [𝐿𝑒𝑚𝑚𝑎 3.3. ] 
⟹ 𝑓𝑝 = 1  

⟹ 𝑎+ 𝑏 = 1 [𝐿𝑒𝑚𝑚𝑎 2.5] 
⟹ 𝑎𝑏 = 0⟹◻. 

 

Hence ∄(𝜋,𝑚) ∈ ℕ∗2, 𝑐 = 𝜋𝑚 with 𝜋 a prime number. 

 

Lemma 3.6. Let 𝜋 > 2be a prime and let (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝be a triple of primitive positive integers 

solution of equation (1).Then, 

 

𝑎 = 𝜋𝑚 ⟹ 𝑐 − 𝑏 = 1. 
 

Proof. Under the assumptions of lemma 3.4. we proceedby absurd supposing that 𝑐 − 𝑏 > 1. We 

have: 

 

𝑐 − 𝑏 > 1 ⟹ 𝑑𝛼 = 𝜋𝑚 , 𝑑𝑝 > 1 [𝐿𝑒𝑚𝑚𝑎𝑠 2.5, 2.6]  
⟹ 𝑑𝛼 = 𝜋𝑚 , 𝑑 > 1  

⟹ 𝑑𝛼 = 𝜋𝑚 , 𝑑 > 1, 𝛼 > 𝑑 > 1.  
⟹◻because gcd(𝑑, 𝛼) = 1 [𝐿𝑒𝑚𝑚𝑎 2.6].  

 

Hence 𝑐 − 𝑏 = 1. 
 

Lemme 3.7. Let 𝑝 > 2be a prime number and let (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝be a triple of primitive solution. 

Then 

 

𝑐 − 𝑏 = 1 ⟹ 𝑎 ≡ 1 (𝑚𝑜𝑑 2). 
 

Proof. 

𝑐 − 𝑏 = 1 ⟹ 𝑐 = 𝑏 + 1  
⟹ 𝑐 or 𝑏 is even 

⟹ 𝑎 is odd. 
 

Lemme 3.8. Let 𝑝 > 2 be a prime number and let (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 be a triple of primitive solution. 

Then  
 

𝑐 − 𝑏 = 1 ⟹ {
𝑐 − 𝑎 = 2 if 𝑐 ≡ 1 (𝑚𝑜𝑑 2)
𝑐 − 𝑎 = 3 otherwise

 

 

Proof. Under the assumptions of the previous lemma, we have: 

 

𝑐 − 𝑏 = 1 ⟹ 𝑏 = 𝑐 − 1 

⟹ {
𝑏 − 𝑎 = 1 if 𝑐 ≡ 1 (𝑚𝑜𝑑 2)
𝑏 − 𝑎 = 2 otherwise

 [𝑇ℎ𝑒𝑜𝑟𝑒𝑚 2.3. ] 

⟹ {
𝑐 − 1 − 𝑎 = 1 if 𝑐 ≡ 1 (𝑚𝑜𝑑 2)
𝑐 − 1 − 𝑎 = 2 otherwise

 

⟹ {
𝑐 − 𝑎 = 2 if 𝑐 ≡ 1 (𝑚𝑜𝑑 2)
𝑐 − 𝑎 = 3 otherwise
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Lemma 3.9. Let 𝑝 > 2 be a prime number and let (𝑎, 𝑏, 𝑐) a triple of non-null positive integers 

relativity primesuch that 𝑐 − 𝑏 = 1. Then  

 

𝑏 ≢ 0 (𝑚𝑜𝑑 𝑝) ⟹ 𝑎𝑝 + 𝑏𝑝 ≠ 𝑐𝑝 

 

Proof. Under the assumptions of the previous lemma, we have if 𝑏 ≢ 0 (𝑚𝑜𝑑 𝑝). Consider 𝑣1 

and 𝑣2 respectively the 2-adic and 3-adic valuations of 𝑒. Then 

 

𝑐 − 𝑏 = 1 ⟹ {
𝑐 − 𝑎 = 2 if 𝑐 ≡ 1 (𝑚𝑜𝑑 2)

𝑐 − 𝑎 = 3 otherwise
  [𝐿𝑒𝑚𝑚𝑎 3.8] 

 ⟹ {
𝑒𝑝 = 2 𝑖𝑓 𝑐 ≡ 1 (𝑚𝑜𝑑 2)

𝑒𝑝 = 3 otherwise
 [𝐿𝑒𝑚𝑚𝑎 2.5, 𝑅𝑒𝑚𝑎𝑟𝑘 2.2] 

                                             ⟹ {
𝑘1
𝑝2𝑣1𝑝−1 = 1 if 𝑐 ≡ 1 (𝑚𝑜𝑑 2)

𝑘2
𝑝
3𝑣2𝑝−1 = 1 otherwise

with 𝑒 = 𝑘12
𝑣1 = 𝑘23

𝑣2 

 ⟹ {
2𝑣1𝑝−1 = 1 if 𝑐 ≡ 1 (𝑚𝑜𝑑 2)

3𝑣2𝑝−1 = 1 otherwise
 

                                               ⟹

{
 

 𝑝 =
1

𝑣1
if 𝑐 ≡ 1 (𝑚𝑜𝑑 2)

𝑝 =
1

𝑣2
otherwise

⟹ {
𝑝 = 1 if 𝑐 ≡ 1 (𝑚𝑜𝑑 2)
𝑝 = 1 otherwise

 

⟹ 𝑝 = 1⟹◻ because 𝑝 > 2. 
 

Hence 𝑐 − 𝑏 > 1. 

 

Remark 3.2. Let 𝑝 > 2 be a prime number and let (𝑎, 𝑏, 𝑐) a triple of non-null positive integers 

relativity prime such that 𝑐 − 𝑏 = 1. When 𝑐 ≡ 0 (𝑚𝑜𝑑𝑝), we have 𝑏 ≢ 0 (𝑚𝑜𝑑𝑝) and 

consequently, according to the preceding Lemma, 𝑎𝑝 + 𝑏𝑝 ≠ 𝑐𝑝 . 
 

Lemma 3.10. Let 𝑝 > 2 be a prime number and let (𝑎, 𝑏, 𝑐) a triple of non-null positive integers 

relativity prime such that 𝑐 − 𝑏 = 1. Then  

 

𝑏 ≡ 0 (𝑚𝑜𝑑 𝑝) ⟹ 𝑎𝑝 + 𝑏𝑝 ≠ 𝑐𝑝 

 

Proof.  Under the assumptions of the previous lemma, we have≡ 0 (𝑚𝑜𝑑 𝑝). Consider 𝑣1, 𝑣2and 

𝑣3 respectively the 2-adic, 3-adic and 𝑝-adic valuations of 𝑒. Then 
 

𝑏 ≡ 0 (𝑚𝑜𝑑 𝑝) ⟹ {
𝑐 − 𝑎 = 2 if 𝑐 ≡ 1 (𝑚𝑜𝑑 2)
𝑐 − 𝑎 = 3 otherwise

  [𝐿𝑒𝑚𝑚𝑎 3.8] 

 

⟹

{
 
 

 
 𝑒

𝑝

𝑝
= 2 if 𝑐 ≡ 1 (𝑚𝑜𝑑 2)

𝑒𝑝

𝑝
= 3 otherwise

               [𝐿𝑒𝑚𝑚𝑎 2.5, 𝑅𝑒𝑚𝑎𝑟𝑘 2.2] 

⟹ {
𝑘1
𝑝2𝑣1𝑝−1 = 𝑝 if 𝑐 ≡ 1 (𝑚𝑜𝑑 2)

𝑘2
𝑝3𝑣2𝑝−1 = 𝑝 otherwise

 

⟹ {
𝑘1
𝑝2𝑣1𝑝−1𝑝𝑣3𝑝−1 = 1 if 𝑐 ≡ 1 (𝑚𝑜𝑑 2)

𝑘2
𝑝3𝑣2𝑝−1𝑝𝑣3𝑝−1 = 1 otherwise

 

⟹{

𝑘1 = 𝑘2 = 1

2𝑣1𝑝−1𝑝𝑣3𝑝−1 = 1 if 𝑐 ≡ 1 (𝑚𝑜𝑑 2)

3𝑣2𝑝−1𝑝𝑣3𝑝−1 = 1 otherwise
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⟹ {
𝑣1𝑝 − 1 = 0, 𝑣3𝑝 − 1 = 0 if 𝑐 ≡ 1 (𝑚𝑜𝑑 2)

𝑣2𝑝 − 1 = 0, 𝑣3𝑝 − 1 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

⟹

{
 

 𝑝 =
1

𝑣1
, 𝑝 =

1

𝑣3
if 𝑐 ≡ 1 (𝑚𝑜𝑑 2)

𝑝 =
1

𝑣2
, 𝑝 =

1

𝑣3
,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

⟹ {
𝑣1 = 𝑣2 = 𝑣3 = 1

𝑝 = 1 
 

⟹𝑝 = 1⟹◻. 
 

Hence 𝑐 − 𝑏 > 1. 

 

Remark 3.3. Let 𝑝 > 2 be a prime number and let (𝑎, 𝑏, 𝑐) a triple of non-null positive integers 

relativity prime such that 𝑐 − 𝑏 = 1. When 𝑐 ≢ 0(𝑚𝑜𝑑𝑝), we have 𝑏 ≡ 0 (𝑚𝑜𝑑𝑝)or 
𝑏 ≢ 0 (𝑚𝑜𝑑𝑝) . In both cases, lemmas 3.9 and 3.10 confirm that 𝑎𝑝 + 𝑏𝑝 ≠ 𝑐𝑝. 
 
Proof of Theorem 1.1. Immediate consequences of Lemmas 3.9 and 3.10, and Remark 3.2 and 

3.3. 

 

3.2. Proof of Theorem 1.2 
 

Proof. Let 𝑝 > 2 be a prime number and let (𝑎, 𝑏, 𝑐) be a triple of relativity prime integers. Then 
 

(𝑎, 𝑏, 𝑐) ∈ 𝐹2𝑝 ⟹ (𝑎2, 𝑏2, 𝑐2) ∈ 𝐹𝑝, 𝑐 ≡ 1 (𝑚𝑜𝑑 2) 

 

⟹ 𝑏2 − 𝑎2 = 1 [Theorem 2.3.] 

⟹ (𝑏 − 𝑎)(𝑎 + 𝑏) = 1 

⟹ 𝑎 + 𝑏 = 1 𝑒𝑡 𝑏 − 𝑎 = 1 
 

⟹ 𝑏 = 1⟹◻  because 𝑏 > 1. 

 
Hence the result. 

 

Remark 3.4. Because ofTheorem1.2 and [1] p.13 (2C), Fermat's theorem is true for all even 

exponents. 
 

3.3. Proof of Theorem 1.3  
 

3.3.1. Proof of FLT for Odd No-Prime Exponent 

 

Theorem 3.3. Let 𝑚 > 2be a positive integer. Then. 
 

𝑚 𝑖𝑠 𝑎𝑛 odd nonprime integer ⟹ 𝐹𝑚 = ∅. 
 

Proof. Let 𝑚 > 2be an odd no-prime number. (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑚. Then: 

 

𝑚 is odd nonprime integer ⟹ ∃(𝑠, 𝑘), 𝑠 > 2, 𝑘 > 2 are odd prime, 𝑎𝑘𝑠 + 𝑏𝑘𝑠 = 𝑐𝑘𝑠 

⟹ (𝑎𝑘)
𝑠
+ (𝑏𝑘)

𝑠
= (𝑐𝑘)

𝑠
 

⟹ 𝑏𝑘 − 𝑎𝑘 = 1  or𝑏𝑘 − 𝑎𝑘 = 2  [𝑇ℎ𝑒𝑜𝑟𝑒𝑚 2.3] 
⟹ (𝑏 − 𝑎)𝑇𝑘(𝑎, 𝑏) = 1 or 𝑏 − 𝑎 = 2 because 𝑘 is odd 

⟹1 > 𝑘(𝑏 − 𝑎)𝑎𝑘−1or 2 > 𝑘(𝑏 − 𝑎)𝑎𝑘−1 

⟹ 𝑏 = 𝑎 ⟹◻; 
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Hence 𝑚 cannot be an odd nonprime integer and consequently 𝐹𝑚 = ∅. 
 

Remark 3.5. FLT is true for odd nonprime exponent. 
 

3.3.2. Proof FLT for Nonprime Exponent 

 

Under the assumptions of Theorem 1.3. let consider(𝑎, 𝑏, 𝑐) ∈ 𝐹𝑛 be a triple of primitive integers 

with 𝑛a nonprime positive integer. We proceed by the absurd: 

 

𝑛 ≡ 0 (𝑚𝑜𝑑2) ⟹ ∃(𝑙, 𝑞) ∈ ℕ2, 𝑙 > 1, 𝑞 > 3 𝑎𝑛𝑜𝑑𝑑𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑛 = 2𝑞𝑜𝑟2𝑙𝑞 

⟹ 𝑎2𝑞 + 𝑏2𝑝 = 𝑐2𝑞  𝑜𝑟 𝑎2
𝑙𝑞 + 𝑏2

𝑙𝑝 = 𝑐2
𝑙𝑞 

⟹ ∃ 𝑝 > 3 𝑎 𝑝𝑟𝑖𝑚𝑒, 𝑙1 ≥ 1, 𝑎
2𝑝𝑞1 + 𝑏2𝑝𝑞1 = 𝑐2𝑝𝑞1 𝑜𝑟 𝑎4𝑙1𝑞 + 𝑏4𝑙1 = 𝑐4𝑙1𝑞 

⟹ (𝑎𝑞1)2𝑝 + (𝑎𝑞1)2𝑝 = (𝑎𝑞1)2𝑝 𝑜𝑟 (𝑎𝑙1𝑞)
4
+ (𝑎𝑙1𝑞)

4
= (𝑐𝑙1𝑞)

4
 

⟹◻. [Theorem 1.2] [2] p.13 (2C). 

 

Hence 𝑛 ≢ 0 (𝑚𝑜𝑑2). Par suite 𝑛 ≡ 1 (𝑚𝑜𝑑2). Traitons ce cas : 

 

𝑛 ≡ 1 (𝑚𝑜𝑑2) ⟹ 𝑛 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑜𝑛𝑝𝑟𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

⟹ 𝐹𝑛 = ∅. 
 

Hence if n is nonprime integer FLT is true. This proves Theorem 1.3. 

 

3.4. Proof of Theorem 1.4 
 

In this section we prove the first case of FLT and the second case 𝑧 ≡ 0 (𝑚𝑜𝑑 𝑝). We distinguish 

two new cases: The case 𝑐 ≡ 1 (𝑚𝑜𝑑 2) or 𝑐 ≡ 0 (𝑚𝑜𝑑 2) 
 

Lemma 3.8. Let 𝑝 > 2  be a prime number and let  (𝑎, 𝑏, 𝑐) be a triple of relativity prime 
integers. Then  

 

(𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 ⟹

{
 
 

 
 
𝑏 − 𝑎 = 𝑒𝑝 − 𝑑𝑝 𝑖𝑓 𝑎𝑏 ≢ 0 (𝑚𝑜𝑑 𝑝)

𝑏 − 𝑎 = 𝑒𝑝 −
𝑑𝑝

𝑝
 𝑖𝑓 𝑎 ≡ 0 (𝑚𝑜𝑑 𝑝)

𝑏 − 𝑎 =
𝑒𝑝

𝑝
− 𝑑𝑝  𝑖𝑓 𝑏 ≡ 0 (𝑚𝑜𝑑 𝑝)

 

 

where (𝑑, 𝑒) is the couple of Kimou’s primaries divisors of (𝑎, 𝑏). 
 

Proof. According to [7], [9], we have 

 

If(𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 then 

 

𝑏 − 𝑎 = (−
𝑑𝑝

gcd(𝑑, 𝑝)
+

𝑒𝑝

gcd(𝑒, 𝑝)
+

𝑓𝑝

gcd(𝑓, 𝑝)
) − (

𝑑𝑝

gcd(𝑑, 𝑝)
−

𝑒𝑝

gcd(𝑒, 𝑝)
+

𝑓𝑝

gcd(𝑓, 𝑝)
) 

 =
𝑒𝑝

gcd(𝑒, 𝑝)
−

𝑑𝑝

gcd(𝑑, 𝑝)
.                                                                                                

 

Hence, 
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(𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 ⟹

{
 
 

 
 
𝑏 − 𝑎 = 𝑒𝑝 − 𝑑𝑝 𝑖𝑓 𝑎𝑏 ≢ 0 (𝑚𝑜𝑑 𝑝)

𝑏 − 𝑎 = 𝑒𝑝 −
𝑑𝑝

𝑝
 𝑖𝑓 𝑎 ≡ 0 (𝑚𝑜𝑑 𝑝)

𝑏 − 𝑎 =
𝑒𝑝

𝑝
− 𝑑𝑝 𝑖𝑓 𝑏 ≡ 0 (𝑚𝑜𝑑 𝑝)

[𝑅𝑒𝑚𝑎𝑟𝑘 2.2. ] 

 

Proof of Theorem 1.4. Under the assumptions of the Theorem 1.4. we proceed to a proof by the 

absurd by assuming that (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝.  

 
We have: 

 

𝑎𝑏 ≢ 0 (𝑚𝑜𝑑 𝑝) ⟹ {
𝑏 − 𝑎 = 1  𝑖𝑓 𝑐 ≡ 1 (𝑚𝑜𝑑 2)

𝑏 − 𝑎 = 2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    [𝑇ℎ𝑒𝑜𝑟𝑒𝑚 2.2. ] 

⟹ {
𝑒𝑝 − 𝑑𝑝 = 1  𝑖𝑓 𝑐 ≡ 1 (𝑚𝑜𝑑 2)

𝑒𝑝 − 𝑑𝑝 = 2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
= 1 [𝐿𝑒𝑚𝑚𝑒 3.8] 

⟹ {
1 > 𝑝(𝑒 − 𝑑) 𝑑𝑝−1𝑖𝑓 𝑐 ≡ 1 (𝑚𝑜𝑑 2)

2 > 𝑝(𝑒 − 𝑑) 𝑑𝑝−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

⟹ 2 > 𝑝(𝑒 − 𝑑) 𝑑𝑝−1 

⟹ (𝑒 − 𝑑) 𝑑𝑝−1 <
2

𝑝
< 1 

⟹ 𝑒 = 𝑑 ⟹◻. 
Hence the result. 

 

Remark 3.6. We have just proved Fermat's last theorem with the even exponent, in its first case 

and in the second case where 𝑐 ≡ 0 (𝑚𝑜𝑑 𝑝) . However, when 𝑎𝑏 ≡ 0 (𝑚𝑜𝑑 𝑝) we have:  

 

𝑎 ≡ 0 (𝑚𝑜𝑑 𝑝) ⟹

{
 
 

 
 𝑒𝑝 −

𝑑𝑝

𝑝
= 1 𝑖𝑓 𝑐 ≡ 1 (𝑚𝑜𝑑 2)

𝑒𝑝 −
𝑑𝑝

𝑝
= 2  otherwise

,  

and  

𝑏 ≡ 0 (𝑚𝑜𝑑 𝑝) ⟹

{
 
 

 
 𝑒

𝑝

𝑝
− 𝑑𝑝 = 1 𝑖𝑓 𝑐 ≡ 1 (𝑚𝑜𝑑 2)

𝑒𝑝

𝑝
− 𝑑𝑝 = 2  otherwise.

 

 
These new Diophantine equations promise to be difficult despite their simple appearances.  

 

4. ANALYSIS OF THE DIFFICULTY OF ESTABLISHING RESULTS  
 

At this stage we propose a classification by increasing difficulty of solving the problems dealt 
with in this paper. First place is occupied by the second FLT case with the odd exponent: it is 

obvious that if(𝑎, 𝑏, 𝑐) ∈ 𝐹2𝑝, with 𝑝a prime number, then 𝑏2 − 𝑎2 = 1is impossible by simple 

making factorisation. The second position is occupied simultaneously by the first and second 

FLT cases 𝑐 ≡ 0 (𝑚𝑜𝑑 𝑝): if (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝Then 𝑒𝑝 − 𝑑𝑝 = 1. Then you'll have to factor and 

major. You'll conclude that this relationship is impossible. This case is more difficult than the 

previous one. The third place is occupied by FLT with nonprime exponent. To prove this, we had 

to distinguish two sub-problems: Prove that FLT is true for the odd non-prime exponent and then 
for the even exponent.In the last position is the second case of Abel's conjecture. Indeed, it turned 

out to be a little more difficult than previous problem because it was necessary to use the 
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relations 𝑏 − 𝑎 = 1, 𝑐 − 𝑏 = 1, the Kimou's principal divisors and 𝑝 adic valuations to establish 

a contradiction. As surprising as it may seem, it explains the difficulty of prove this problem. 

 

5. CONCLUSION 

 
In this paper we establish Diophantine proofs of Abel's conjecture, Fermat Last Theorem for the 

exponents even, non-prime exponent, the first case and the second case 𝑧 ≡ 0 (𝑚𝑜𝑑 𝑝). We 

analyse these proofs and establish a ranking in order of increasing difficulty in solving the Fermat 

problems treated.In perspective, we intend to:  
 

- establish a Diophantine proof of the second remaining cases, i.e. to prove that if 

𝑥𝑦 ≡ 0 (𝑚𝑜𝑑 𝑝) then 𝑥𝑝 + 𝑦𝑝 ≠ 𝑧𝑝. 

- extend methods to broader classes of equations: Catalan’s equation, Beal problem and 

others General Fermat problem. 

- introduce new concepts such as the universe and Diophantine galaxies, as well as the 

similarity principle, and then find applications for them in astronomy, astrophysics, 

cosmology and artificial intelligence. 
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