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ABSTRACT 
 
Differential equations are an increasingly essential tool used in public health epidemiology, enabling the 

modeling of communicable disease spread in a population and informing the development, implementation, 

and assessment of public health interventions. As public health professionals increasingly rely on GenAI 

for data management and data analysis, understanding the mathematical equations underlying a 

communicable disease model becomes crucial.  This essay provides an accessible overview of ordinary 
first-order differential equations, including the linear first-order differential equation (i.e., exponential 

growth model) and the nonlinear first-order differential equation (i.e., SIR model), for the public health 

epidemiologist. We explain each type of differential equation and show a step-by-step solution to facilitate 

comprehension. A real-world application of the use of first-order differential equations in public health is, 

briefly, presented. Then, we discuss how real-world data, first-order differential equations, data analysis 

and predictive data modeling can contribute to the development of insights that guide the development, 

deployment, and assessment of public health interventions by public health decision-makers for a 

population. In the appendix, sample prompts are provided to help leverage the power of GenAI in the use 

of mathematical models in public health epidemiology. This technical review aims to provide the 

epidemiologist with an understanding of first-order differential equations function in the context of 

communicable disease modeling at a community- or population-level for public health decision-making 

and action.  
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1. INTRODUCTION 
 

Differential equations have been fundamental tools in public health epidemiology, providing a 

mathematical framework to model the spread of infectious diseases, predict outcomes, and guide 

interventions for a population. These equations describe how the disease experience changes in a 
population over time, accounting for factors such as transmission rates, recovery rates, and 

population dynamics. In fact, many epidemiological models (such as exponential growth models, 

SIR models) are built on first-order differential equations [1,2]. While mathematical, the results 
and interpretation of these equations make them ideal for communications between public health 

epidemiologists and public health professionals and the public [3,4]. 

 
The ordinary, first-order differential equation is especially useful with public health 

epidemiological surveillance data because these equations model the dynamics of communicable 

disease spread over time by capturing the first derivative of disease states in a population over 
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time. The first-order differential equation can be solved easily with modern analytic software and 
GenAI especially when the datasets are large and this makes the use of differential equation ideal 

for use with modern computational tools and algorithms that process public health surveillance 

data. Surveillance systems based on real-time incorporation of electronic laboratory reporting 

(ELR) data of new cases and recoveries can be easily ingested by first-order differential 
equations to update, for example, SIR model parameters (such as transmission rate or recovery 

rate) in real time [5-10].  

 
Historically, disease modeling used both deterministic and stochastic models in the context of 

infectious disease outbreaks such as pandemic influenza, HIV/AIDS, and other communicable 

diseases. The limitations faced by these early uses dealt with issues of data availability, 
computational power,  model accuracy, and the challenges of predicting complex systems [11-

14]. Mathematical models, including those based on differential equations, have become 

important tools for public health decision-makers, offering quantitative insights to inform both 

policy decisions and operational public health actions [15]. Various mathematical models used in 
public health epidemiology have been reviewed in the context of epidemics such as H1N1, Ebola 

and Zika to illustrate how these models were used to predict disease spread and evaluate 

intervention strategies [16]. Interestingly, these mathematical models can be used to address 
health disparities during an infectious disease outbreak by considering factors such as race, 

ethnicity, and socio-economic status in the modeling efforts [17]. The equations model both the 

progression of disease in a population and enable public health officials to make informed 
decisions about interventions, such as implementing quarantine measures or allocating resources. 

 

By understanding these mathematical models, public health professionals can better anticipate the 

course of an epidemic, evaluate the potential impact of interventions, and make data-driven 
decisions to protect public health. This technical review is designed to discuss key concepts 

offirst-order differential equation for public health epidemiologists. This review contains four 

parts: 1) linear first-order differential equation with step-by-step worked problem; 2) nonlinear 
first-order differential equation with step-by-step worked problem; 3) a case study from the 

published literature; and 4) framework connecting mathematical models in epidemiology with 

real-time data for public health interventions. In the appendix, sample prompts are provided to 

help leverage the power of GenAI in the use mathematical models in public health epidemiology. 
This technical review aims to provide the epidemiologist with an understanding of first-order 

differential equations function in the context of communicable disease modeling at a community- 

or population-level for public health decision-making and action. 
 

2. LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS 
 

The published, scientific literature has many examples of the description and study out 

communicable disease outbreak data that demonstrate exponential growth of the disease in a 
population of a specific geographic location [18]. Exponential growth is a common application of 

the exponential function that is common in the study and practice of applied calculus in public 

health epidemiology [1-2,19-21]. The exponential growth function is a common linear first-order 
differential equation. 

 

2.1. Introduction to Linear First-Order Differential Equations 
 

Linear first-order differential equations describe situations where the first derivative of a function 

represents the outcome variable of interest (say, the number of individuals with a communicable 
disease in a population) with respect to time is proportional to the quantity itself. The first 

derivative ( 
𝑑𝑦

𝑑𝑡
  ) is also known as the rate of change. The first-order differential equation is useful 
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for modeling the early stages of a communicable disease outbreak, where the spread of the 
disease shows the pattern of exponential growth or decay. Consider the basic first-order 

differential equation: 

 
𝑑𝑦

𝑑𝑡
 = β y 

 

Where  
𝑑𝑦

𝑑𝑡
  represents the rate of change in the number of infected individuals over time t, and β 

is a constant representing the transmission rate of the disease. This equation models the situation 

where each infected individual spreads the disease to others at a constant rate, leading to 

exponential growth in the number of infections within the population. In other words, the 

exponential growth functions described in the above equation allows the epidemiologist to 
predict how fast a communicable disease might spread in a population and guiding the 

deployment of community disease control measures. 

 

2.2. Solving Linear First-Order Differential Equations 
 

Problem: As found in a public health disease surveillance system, the number of cases of a 
communicable disease is growing at a rate proportional to the current number of cases. Suppose 

the growth rate of the communicable disease is 0.3 per day. If 100 cases are reported today, 

model the number of cases N(t) after t days. 
 

Below is a table (Data Table 1) that shows the number of communicable disease counts over 

time, given a daily growth rate of 0.3 per day. 

 
Data Table 1: Daily counts of new cases of communicable disease by day 

 
Day Number of Cases N(t) 𝑑𝑁

𝑑𝑡
 (Rate of Change) 

0 100 0.3 x 100 = 30 

1 100 x e 0.3 ≈ 134.99 0.3 x 134.99 ≈ 40.50 

2 160 x e 0.6 ≈ 182.21 0.3 x 182.21 ≈ 54.66 

3 190 x e 0.9 ≈ 245.96 0.3 x 245.96 ≈ 73.79 

4 220 x e 1.2 ≈ 332.87 0.3 x 332.87 ≈ 99.86 

 

Step-by-Step Solution 

 

1. Set-up the differential equation: The above problem describes a communicable disease with 

exponential growth, which can be modeled by the differential equation: 
 

𝑑𝑁

𝑑𝑡
 =  0.3𝑁 

 
2. Solve the equation: This is a separable differential equation. Integrating both sides yields: 

 

∫
1

𝑁
 𝑑𝑁 =  ∫ 0.3 𝑑𝑡 

 

Solving the integrals gives: 

 
ln(N) = 0.3t + C 

 

Exponentiating both sides gives: 
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N(t) = e 0.3t + C = eC e0.3t 

 

 

Letting eC = No (the initial number of cases), we have:  
 

N(t) = N0 e
0.3t 

 
3. Apply initial conditions: Given N(0) = 100, we have N0 = 100. See Data Table for details. 

 

4. Interpret the solution: From the Data Table 1, we see that the number of cases grows 
exponentially, reflecting the early stages of a communicable disease outbreak where the disease 

is spreading rapidly. Public health officials can use the model to forecast the number of cases in 

the coming days, allowing them to allocate resources for the community. 

 
Summary: For monitoring disease spread, using the linear first-order differential equation allows 

the public health epidemiologist to predict the number of future infections and help the public 

health decision-maker manage public health resources effectively. 
 

3. NONLINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS 
 

A nonlinear first-order differential equation used to model epidemics is the SIR (Susceptible-

Infected-Removed) model and related to first-order differential equations from applied calculus 
[21]. The SIR model can be applied to the outbreak of influenza in a population [22]. All models 

of infectious disease use simplified mathematical models to represent key features of complexity 

of the infection in the population, including the pattern of transmission [4-6; 23-24]. 
 

3.1. Introduction to Nonlinear First-Order Differential Equations 
 
The SIR model (Susceptible-Infected-Recovered) is a classic example of a nonlinear differential 

equation system used to describe how a disease spreads through a population. It divides the 

population into three groups: 
 

1. Susceptible (S): These are people who can catch the disease. 

2. Infected (I): These are people who currently have the disease and can spread it to others. 

3. Recovered (R): These are people who have recovered from the disease and are now 
immune (or have died, depending on the context). 

 

The mathematical model consists of three, coupled first-order differential equations: 
 

𝑑𝑆

𝑑𝑡
=  -β SI 

 
𝑑𝐼

𝑑𝑡
 = β SI - γ I 

 
𝑑𝑅

𝑑𝑡
 = γ I 

 

These equations represent the rates of change for susceptible, infected, and recovered 
populations, respectively. 
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𝒅𝑺

𝒅𝒕
: This equation represents the rate of change of the susceptible population. It decreases as 

susceptible individuals come into contact with infected individuals and become infected. 

 
𝒅𝑰

𝒅𝒕
: This equation represents the rate of change of the infected population. It increases as 

susceptible individuals become infected and decreases as infected individuals recover. 

 
𝒅𝑹

𝒅𝒕
: This equation represents the rate of change of the recovered population. It increases as 

infected individuals recover and gain immunity. 

 
In each case, the first derivative of one group (S, I, or R) depends on the current size of that group 

and possibly others. The terms of the right-side of these equations, known as the rate of change 

expressions, are crucial in dictating the dynamics of how the population in each compartment in 

the mathematical model (S, I, R) evolves over time. The right-side terms determine the rate at 
which individuals transition between groups, directly influencing the trajectory of the disease 

spread. In real-world public health applications, the transmission rate (β) and recovery rate (γ) 

might vary over time due to factors such as changes in population behavior, intervention 
strategies, or the emergence of new variants.  

 

This basic model serves as an introduction, but more complex models might be needed for 

specific scenarios. In practice, these coupled, first-order equations are part of the broader system 
dynamics that govern the spread of infectious diseases. When applying the SIR model to real-

world scenarios, it is essential to consider data variability, potential inaccuracies, and the need for 

continuous updates, especially when using real-time data from Electronic Lab Reporting (ELR) 
systems. This analysis helps epidemiologists understand the dynamics of the epidemic and the 

impact of public health interventions 

 

3.2. Solving Nonlinear First-Order Differential Equations 
 

Problem: Suppose we have a small town with 1,000 people, and using the public health 
communicable disease surveillance system disease tracking in ongoing using ELR data. On Day 

1, we have the following: 

 
 990 people are susceptible (S = 990) 

 10 people are infected (I = 10) 

 0 people have recovered (R = 0) 

 
The transmission rate (β) is 0.001, meaning that the chance of disease transmission during contact 

between a susceptible and an infected individual is relatively low. 

 
The recovery rate (γ) is 0.1, meaning that each infected person has a 10% chance of recovering 

on any given day. 

 

Now, using the table (Data Table 2), let's see what happens over the next few days. 
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Data Table 2: SIR Model-Predicting community disease spread in a population by tracking the number of 

susceptible, infected, and recovered individuals in a population over time 

 

Day 
Susceptible 

(S) 
Infected (I) 

Recovered 

(R) 

Transmission 

Rate (β) 

Recovery 

Rate (γ) 

1 990 10 0 0.001 0.1 

2 980 19 1 0.001 0.1 

3 961 36 3 0.001 0.1 

4 926 67 7 0.001 0.1 

 

Step-by-Step Calculations for Day 2 

 

1. Calculate the change in susceptible people (dS): 

 
𝐝𝐒

𝐝𝐭
 = -βSI 

 
𝐝𝐒

𝐝𝐭
 = -0.001 × 990 × 10 

 
𝐝𝐒

𝐝𝐭
 = -9.9 (per day) 

 

So, about 10 susceptible people would get infected over this period. 

 

2. Calculate the change in infected people (dI): 
 

𝐝𝐈

𝐝𝐭
 = βSI – γI 

 
𝐝𝐈

𝐝𝐭
 = 0.001 × 990 × 10 - 0.1 × 10 

 
𝐝𝐈

𝐝𝐭
 = 9.9 – 1 

 
𝐝𝐈

𝐝𝐭
 = 8.9 

 

So, the number of infected people increases by 9 over this period. 

 

3. Calculate the change in recovered people (dR): 

 
𝒅𝑹

𝒅𝒕
 = γI 

 
𝒅𝑹

𝒅𝒕
 = 0.1 × 10 

 
𝒅𝑹

𝒅𝒕
 = 1 

 

So, 1 person recovers in this period. 
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Updated Counts for Day 2: 
 

 New S = 990 - 10 = 980 

 New I = 10 + 9 = 19 

 New R = 0 + 1 = 1 
 

These counts for Day 2 along with those for the remaining days allow public health officials to 

forecast when the number of infected persons for the disease might peak. This knowledge could 
help officials better prepare for vaccine distribution and consider the possible needs of additional 

numbers of healthcare beds in a specific area where the communicable disease is present. 

 
(Note: following the above pattern of calculations will yield the data for Day 3 and Day 4.) 

 

Summary: The SIR model allows the public health epidemiologist to predict how a disease 

might spread in a population by tracking the number of susceptible, infected, and recovered 
individuals in a population over time (Data Table 2). By using real-time data, such as from ELR 

systems, this model helps public health officials anticipate the course of a communicable disease 

outbreak and adjust population-level resources and interventions. For instance, knowing how the 
transmission rate (β) and the recovery rate (γ) might impact the spread of the disease enables 

public health decision-makers to allocate resources, implement control measures like quarantine, 

or adjust public health messaging. The SIR model may provide critical insights for both 
forecasting communicable disease progression and evaluating the impact of public health 

interventions. This model plays a vital role in public health surveillance by providing a 

framework for monitoring the progression of disease outbreaks and evaluating the effectiveness 

of interventions. 
 

4. CASE STUDY-USE OF DIFFERENTIAL EQUATIONS IN MODELING THE 

SPREAD OF INFECTIOUS DISEASES 
 

Researchers examined the spread of Hepatitis C virus (HCV) among a group of at-risk 

individuals, aged 15-29, in Michigan, between 2000 and 2016. Their aim was to study how HCV 
spreads within this demographic cohort by analyzing disease transmission data and predicting 

disease prevalence using health surveillance data and ordinary differential equations (ODE) [25]. 

A HCV ODE transmission model was developed, and the researchers described how surveillance 
data were incorporated into the ODE transmission model. They also explained how continuous 

data updates and dynamic model adjustment could refine and enhance the predictive accuracy of 

their ODE model. The case study aligns with the principles and techniques of differential 
equations used in public health epidemiology as discussed in this paper. The public health 

implications resulting from the analytic efforts of the researchers can be found in their published 

paper [25]. 
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5. LEVERAGING DIFFERENTIAL EQUATION MODELS AND ELR SYSTEMS 

FOR PUBLIC HEALTH INTERVENTIONS 
 

Concept Map: Framework Connecting Mathematical Models in Epidemiology with Real-

Time Data for Public Health Interventions 

 
 
Figure 1.Concept map to visually connecting mathematical models in epidemiology with real-time data for 

public health interventions 

 

The concept map (Figure 1) illustrates the possible interplay between real-time data, first-order 
differential equations, automated data analysis and predictive modeling for a public health 

intervention. For example, adapting population-level disease control strategies to an evolving 

communicable disease outbreak is a typical application of this approach. The themes or topics 
discussed in this essay can be visualized using a concept map, where the concepts, enclosed in 

boxes with lines, show possible relationships between key elements that contribute to public 

health decision-making for interventions. 

 
Public health, epidemiology, and the operation of a public health disease surveillance system has 

been described [26-27]. In a modern public health surveillance system, where Electronic 

Laboratory Reporting (ELR) data is used as a primary source at an enterprise-level and GenAI is 
an available tool, the public health data structure and response could be different from a 

traditional approach. ELR enabled public health surveillance systems could provide real-time 

data, which can be fed into mathematical models, such as first-order differential equations (e.g., 

exponential growth models, SIR models), to track and predict the of communicable disease in a 
population. The main elements from the concept map could be connected is a possible way that 

could leverage real-time data, GenAI, and first-order differential equations to inform the 

development of public health interventions for the population based, in part, on the interpretation 
of these surveillance system data. The elements of the concept map are described: 

 

5.1. Element: Core Epidemiological Modeling Techniques 
 

Concept Map Element: First-Order Differential Equations and SIR Models 

This element is the foundational importance of first-order differential equations and SIR models 
for public health epidemiology. The mathematical tools help model the spread of communicable 
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diseases and inform public health interventions. This is the core of mathematical models in 
epidemiology for public health practice for communicable disease prevention activities. 

 

Differential equations, including SIR models, have a foundational role in the use of mathematical 

modeling for public health epidemiology and subsequent public health action. The application of 
mathematical modelling in understanding the disease dynamics of the COVID-19 pandemic has 

been documented [28-29]. 

 

5.2. Element: Real-Time Disease Data Integration 
 

Concept Map Element: ELR Systems 
 

ELR (Electronic Laboratory Reporting) systems are crucial for collecting and transmitting near, 

real-time data on communicable diseases. After ensuring that these data are of high quality and 
internally consistent prior to use, ELR data sources have the potential to update the parameters 

used in mathematical epidemiologic modeling in order to improve the precision and relevance of 

public health interpretation for public health action. The ELR data quality require, at least, 
consistent temporal, test results for the individual records corresponding to the test results and 

included with HL7 data transmission protocols.  

 

Investigators found that integrating near, real-time data from ELR systems along with dynamic 
global data improve the accuracy and reliability of epidemiological models [30-31]. This serves 

to underscore the implied role of ELR data in public health surveillance systems that use 

mathematical epidemiologic models as the basis of public health epidemiologic analysis and 
insights. 

 

5.3. Element: Real-Time Predictive Model Calibration 
 

Concept Map Element: Real-Time Data 

 
The ingestion of near, real-time data from ELR systems allow for predictive model calibration 

(e.g., SIR model calibration). GenAI algorithms could automatically adjust key model 

parameters, such as the transmission rate (beta) and recovery rate (gamma), based on incoming 

data. These dynamic model adjustments improve the accuracy of model predictions and help 
public health epidemiologists analyze and interpret data for public health action. 

 

While the need for continuous model calibration has been acknowledged, it is important to 
understand the inherent challenges of real-time model calibration during a communicable disease 

outbreak [30,32]. GenAI-driven calibration, along with the simple act of comparing model results 

with past data and assessing how small changes might affect subsequent predictions, can help 
make the model predictions accurate and reliable. Calibrating predictive epidemiological models 

with continuous real-time data is important. 

 

5.4. Element: Epidemiological Methods and Applications with GenAI 
 

Concept Map Element: Automated Data Analysis and GenAI/ChatGPT4o 
AI-tools like GenAI/ChatGPT4o can automate the analysis of complex, vast datasets to uncover 

trends and patterns that may not be apparent using traditional methods (see appendix). GenAI can 

assist the public health epidemiologist in the analysis and consideration of data findings and leads 

to the development of insights that can be contextualized for public health decision-makers as 
they consider public health interventions for the population. 
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Investigators examining the COVID-19 outbreak in a geographic location mentioned building 
trustworthy data-driven epidemiological models discussing concepts such as model development, 

calibration, real-time data integration, sensitivity analysis that AI supports or automates 

[30].Other investigators focused on using SIR models to examine the changes in the basic 

reproduction number (Ro) across different countries during the COVID-19 pandemic, mentioning 
“automatic figures” and “predicted trends” that suggest the use of advanced computational 

techniques, including AI-driven algorithms to handle large datasets and complex calculations 

[33]. By automating data management, data analysis, and model updates, GenAI helps public 
health epidemiologists respond faster in assessing and interpreting public health surveillance data 

in order to develop insights for public health decision-makers. 

 

5.5. Element: Communicable Disease Forecasting with GenAI 
 

Concept Map Element: Enhanced Predictive Modeling 
 

AI techniques enhance traditional forecasting efforts and predictive modeling by adjusting the 

parameters dynamically. This allows the public health epidemiologist to spend more time 
confirming the appropriate use of forecasting and predictive modeling techniques, considering 

the output, interpreting the findings for public health action, and framing the overall findings and 

insights in a way that is most useful for public health decision-makers. 

 
While traditional statistical methods can improve forecasting accuracy and help refine predictive 

models for understanding the prevalence and incidence of communicable diseases in a 

population, GenAI may also play an increasingly important role in the same analytic activities 
[31-32]. GenAI can be leveraged to provide dynamic adjustment of epidemiological model 

parameters that can lead to improvements in forecasting. 

 

5.6. Element: Public Health Interventions 
 

Concept Map Element: Public Health Interventions 
 

Ultimately, the analytic insights generated using this process must be framed by the public health 

epidemiologist for the public health decision-maker to guide the development of public health 

actions and interventions for the population. Interventions are designed to control communicable 
disease spread in a population, evaluate the effectiveness of public health measures, such as 

community vaccination campaigns, improve the health status of the population, and protect the 

health of the population. 
 

SIR models and other epidemiological models were used during the COVID-19 pandemic and 

similar outbreaks to inform the development of analytic models and guide the implementation of 
public health interventions to control these diseases [29,32]. 

 

ELR data provides real-time information that is critical for parameterizing and validating 

differential equation models. By incorporating this data into these models for improved 
predictions, decision-makers can adjust public health strategies. 

 

6. CONCLUSION 
 
Differential equations, both linear and nonlinear, are essential tools in public health epidemiology 

that help inform public health action. These mathematical models enable public health 

epidemiologists to model disease dynamics and predict outcomes. The models also contribute to 
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the development of insights supporting effective public health decisions. By incorporating real-
time data from sources like ELR, these mathematical epidemiologic models can be continually 

refined to improve public health data analysis and insights. As GenAI becomes incorporated into 

the work of public health, it will be critical for professionals, like public health epidemiologist, to 

be knowledgeable of mathematical modeling in public health epidemiology in order to evaluate 
the first-order differential equation outcomes produced by GenAI. This technical review provided 

a brief introduction to mathematical models in public health epidemiology and described a 

framework connecting mathematical models in epidemiology with the data found in a public 
health surveillance that contribute to insights for public health decision-makers. In the appendix, 

sample prompts are provided to help leverage the power of GenAI in the use mathematical 

models in public health epidemiology. 
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APPENDIX: GENAI/CHATGPT4O PROMPTS TO INITIATE ASPECTS OF FRAMEWORK 
 

These simple prompts are included to assist public health epidemiologists in leveraging the power of 

GenAI in professional work. 

 

Sample prompt for data screening: This prompt will help identify inconsistencies and outliers in the data 

related to infections, transmission rate, and recovery rate all crucial for accurate modeling. 
 

“Using a de-identified, public use dataset from a public health surveillance system (already 

uploaded), identify missing or inconsistent data related to reported cases of communicable 

disease. Focus on identifying outliers in variables number of infections over time, transmission 
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rate, and recovery rate. Flag any data discrepancies that could affect the accuracy of subsequent 

differential equations modeling (e.g., for linear models or SIR models).” 

 

Sample prompt for first-order differential equations: This prompt uses the uploaded data to model 

exponential communicable disease spread with instructions on using a growth rate of 0.3 to solve the 
differential equation. 

 

“Given the current, de-identified, public use data (uploaded earlier) showing the number of 

infected individuals over time, solve a linear first-order differential equation that models 

exponential communicable disease spread. Use an initial infection count of 100 cases and a daily 

growth rate of 0.3. Predict the number of cases over the next five days and generate a plot to 

visualize the trend.” 

 

Sample prompt for data analysis:  This prompt guides the user through analyzing SIR model output, 

focusing on key patterns, such as infection peaks and recovery rates. 

 

“Using the output from a SIR model simulation, analyze the changes in the number of susceptible 
(S), infected (I), and recovered (R) individuals over a four-day period. Input values include 

S=900, I=10, R=0, transmission rate (β)=0.001, and recovery rate (γ)=0.1. Identify the patterns 

such as wen the infection rate peaks or how the recovery rate influences the decrease in the 

number communicable disease counts. Generate a chart that visualizes these changes to better 

understand communicable disease dynamics.” 

 

Sample prompt for predictive modeling:  This prompt advises on updating the SIR model parameters based 

on new data (these data would be uploaded). 

 

“Using a current, de-identified, public use data (uploaded earlier) from an ELR system, update the 

parameters of a SIR model as new cases and recoveries are reported. Adjust the transmission rate 
(β) and recovery rate (γ) based on changes in the population, such as vaccination campaign 

efforts. Generate forecasts for the next 14 days and visualize how these changes might alter the 

communicable disease trajectory.” 
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