Applied Mathematics and Sciences: An International Journal (MathSJ), Val. 1, No. 1, May 2014

THE WEAK SOLUTION OF BLACK-SCHOLE’S OPTION
PRICING MODEL WITH TRANSACTION COST

Bright O. Osu and Chidinma Olunkwa

Department of Mathematics, Abia State University, Uturu, Nigeria

ABSTRACT

This paper considers the equation of the type

_ou dxz ‘B——k (@a—“)(xt) R x (0,T);

WhICh is the Black Scholes option pricing model that includes the presence of transaction cost. The
existence, uniqueness and continuous dependence of the weak solution of the Black-Scholes model with
transaction cost are established.The continuity of weak solution of the parameters was discussed and
similar solution asin literature obtained.
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1. INTRODUCTION

Options are financia instrument that convey the right but not the obligation to engage in a
future transaction on the underlying assets.In a complete financial market without transaction
costs, the celebrated Black-Sholes no-arbitrage argument provide not only a rational option
pricing formula but also a hedging portfolio that replicate the contingent claim [8] .However the
Black-Scholes hedging portfoliorequires trading at all-time instants and the total turnover of
stock in the time interval [0, T] is infinite. Accordingly, when transaction cost directly
proportional to trading is incorporated in the Black —Scholes model the resulting hedging
portfolio is quite expensive. The condition under which hedging can take place has to be relaxed
such that the portfolio only dominate rather than replicate the value of the European cal option
at maturity .The first model in that direction was presented in [4] . Here it was assumed that the
portfolio is rebalanced at a discrete time and that the transaction cost in buying and selling the
asset are proportional to the monetary value of the transaction. At a price S and a constant K
depending on an individual’s aversion to risk, the transaction costs areN~ K~ S~ where N is
the number of shares bought (N > 0) or sold (N < 0). In [7], the existence, uniqueness and
continuity of the Black —Scholes model was discussed. Also in [6], option pricing with
transaction costs that leads to a nonlinear equation was investigated.In a related paper [1],the
discretetime, dominating policies was presented. In [3] further work on this in the presence of
transaction cost was presented...By applying the theorem of central limit, they show that as the
time step At and transaction cost  tend to zero. The price of discrete option converged to a
Black —Sholes price with adjusted volatilityd (.). Here Atrepresent the mean time length for a
change in the value of the stock instead of transaction frequency. Here our adjusted volatility is
given by;

6% = 0%(1 — Lesgn(d2v). (1.2)
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6 =6(9f), Le=~— (\EWJ

then we have the adjusted volatility as in[7], where dt is the time lag between consecutive
transaction.

Let f(s,t) be the value of the option and M be the value of the hedge portfolio. We
assumeinstead that the value of the underlying follows the random work

ds = usdt + dstdw

with drowned from a normal distribution,u is a measure of the average rate of growth of the
asset price also known as the drift whereit = @ —r and o is a measure of the diffusion
coefficient . Then the change in the value of the portfolio over the time step dt is given by
(using (1.1))

AM—as(——A}de+( 212(1—!esgn(6‘2f)) Lt (o - r)s—+——aﬂq)dt—$/N/K.

dis dsa  at

Making a digression and investigating the nature of the number of assets bought or sold given

that we posit the number of asset x (the delta of our option) asx = %

Conventionally, thedelta of an option is represented by A . Given that x is evaluated at the asset
value sand time t,we have x = ‘;—’; (s, t).

Rehedging after finite time At leadsto a changein the value of assets as below
i
= a—‘sr(s + As, t + At).

This of course evaluated at the new asset price and time .therefore the number of assets to be
traded after At isgiven by

f(s+As t+At)——’r( t)~—cr isdw.

Hence the expected transaction cost over atime step is

2

E[s /n/k] = ksE[|n|] = ksE [ %J‘ 'deH

The expected change in the vaue of the portfoliois
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2 (0

EQAM) = (L +25%(62f.5,t)s? ——k J = |2L)ae

If the holder of the option expects to make as much from his portfolio as from a bank account at
arisklessinterest rate r(no arbitrage), then

E@M) =7(f—sL)at.

Hence following[ 9] for option pricing with transaction costsis given by

af = a2 ar 2 a
e @05t el —rr —kost [Tl <060 @edxOD. @2

and the fina condition
f(s,t) =max(s —E,0),s (0,00),
for European call option with strike price E.

Note that equation (1.2) contents the usua Black-Scholes terms with additional nonlinear term
modeling the presence of transaction costs. Setting

1
x:mq%%}tzT—n%§{f=EWKﬂ,
equation (1.2) becomes

av . a%v av _ I
—— o+ k—D——kV=k, (x,) (OT) (L3

with initial condition

V(x,0) = max(e* —10),x R,

Where
=r16%72) .k = k\/8n62dt) and T =6°T2.
Set
V=_(x1)=e"U(x1).
Then (1.3)gives
SR (kv ) = gx‘; , (x,7) Rx(0,T), (1.4)

With theinitial condition

u(x,0) = max(1 —e~*,0)
Let
P=k+1
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The previous discussion motivates us to consider the following problem that includes cost
structures that go beyond proportional transaction costs.

du , 9*u du _ .. [(du @*u
_E+ﬁ+$$_ F(a,ﬁ)(x_,f) R % (0,T), (1.5

and
u(x,0) =uy(x), x R (1.6)
In this paper we looked into parameters that are governing the Black-Scholes option pricing

model with the present of transaction costs such that eguation (1.5) exhibits the desired
behaviour. More precisely, let

Paa = {q i (913, ’E) € [Brnins Brmax] % [-Ema'n:’l;max]] ’

where
PBnin > 0 andk,yin > 0.

Defined afunctiona j(q) by
J(@) = Mg, ) = 2a W2 7.1y (17

where the daltaz,; can be thought of as the desired value of u(q; t). The parameter identification
problem for (1.5) with the objective function (1.7) isto find

q =(Pk") € Paq

Satisfying
I(q) = infq »,,J(Q). (1.8)
Let

q - u(q)

from,P in to C([0, T]; H be the solution map . In what follows, the existence and uniqueness of
the weak solution of (1.5) is established in the next section. Continuity of the solution with
respect to datais established in section 3.

2. EXISTENCE AND UNIQUENESS OF WEAK SOLUTION

Since the type of equation in (1.5) do not belongto L?(R) we introduce weighted |ebessgue and
sobolev spaces

L;(R)ancHg(R) for >0

asfollows.
LE(R) = {u € Lipc(R):ue ¥ [2(R)} (2.1)

HI®R) = {u € L}, (R):ue PH 12(R), /e P¥ 12(R)}.(2.2)

46
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The respective inner products and norms are defined by

(u, v)L%(R) = Juve M dx(2.3)

(W, V)1 = Jpuve “2Bldx + [ u'v'e 2Pl dx (2.4)
Mull gy = (Jplul?e™2PFldx)? (2.5)
1
Wl ymy = (Jplul?e?Mdx + [y [u'|?e~2#¥ldx)?(2.6)

We define the dual space of H3(R) as

(Hé(R)) = {u\w Hé (R) - Ris linear and continuous }(2.7)

The duality pairing between Hj(®) and( H}(R) ) isgiven by
uv =j'R|u|28_2mxldx (2.8)
In what follows, we state,

LEMMAL:  Let f=L3(R)For  Csupp = (-11).f, d(x)dx=1and =
1 o

: ()

then

e f - finlz(R). (2.9)

PROOF: Suppose g = e %P1,
then we have
(e Na=0@c+FD+Ce fla— e (fq). (210

since
f.g L*and . (f.q)inl?

it suffices to show that

Hgclz=Ce f)g— e (FOI) -0 fore-0 (2.112)
The fundamental theory of calculusfor g give

ge(x) = Jz 1e«(x = V)f (1)(a(x) — q(¥)) dy (212
using
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supp 'e = (—€,€)
We get
1900 < Izl e(x = M FO)I2e suplg'(©)Ddy = Sl e(x = DIFDI2e suplq’ (v + ) dy = Fe(x)(2.13)
Since
ge(x) = I?
uniformly and
|96 (0| < 2€lge(x)].
thus
lg(x)ll,2 -~ Oase -~ O

LEMMA 2: D(R)the space of test functionin R,isdensein Hé(ﬂe).

PROOF .Letf Hy(R) and® C*

such that
1, iflx|<1

P@) =], iflx] = 2

Now we show that
e = (f,cp(g(_))) + D CF
where
%= () fe - f

inHZ(R).ie

fo - f and 'fo - Vf inL3(R) (2.14)

Vie=(f-®(e(.)) * P +e(f D(e())) * P (2.15)
It suffices to show
(f-®(e(.) x @ = f inL3(R) (2.16)
By the lebesgue Dominated convergence Theorem ,we get

f-@(e()) - fin Lp(R)(2.17)

Hence Lemma 1 concludes the proof.
Since D(R) isdensein Hﬁ (R) and Lf; (R) , thefollowing lemmafollowsimmediately.
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LEMMA 3:

HAR)  L3(R) (Hg(:ze)) .
from Gelfand triple.

Note. Since D(R) isdense in H’% (R).the definition of .,. alows us to interprete the operator
A as amapping from Hy - (Hﬁ)*‘

for our smplicity,we use

V=H}®R).V =(H}R)) and H = L}(R)
To usethe variational formulation let us defined the following bilinear formon V' x V
Ay (W v) = PPu'v'e 2P + k[ uve 2P ¥ dx — (I? - ﬂ}) Jpu've 2P X dx (2.18)

for
B>0andk >0,

One can show ag 7 (w, v) isbounded and coercivein V .Define linear operator
/‘l(slgglk): D(A(‘B.k)) = {u:u V, A(‘.B.k)“’ eV J

intol’ by
i) W) = (Agi, )

foralu D(Awpp)) forallv V.

DEFINATION 4.Let X be a Banach space and a,b B with a < b,1<p < co.Then
L%(0,T; X) and L= (0, T ; X)denote the space of measurable functions u defined on (a, b) with
valuesin V such that the function ¢ - llu(., t)lly is square integrable and essentially bounded.
The respective norms are defined by

o

Ml 207y = (S M, Ot (2.19)
el oo 07,5y = ess. supgerepllu(., t)lly. (2.20)
For details on these function space ,see [10]
Definition 5.A function u: [0, T] - V isaweak solution of (1.5) if
(u L*,T;V)and u, € L2(0,T;V*);

(ii) For every v € V, u(t),v) + aig 5y (u(t), v) = 0 ,for t pointwise a.e.in [0, T,
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Note .The time derivative u, understood in the distribution sense.The following two lemmas are
of critical importance for the existence and uniqueness of the weak solutions.

LEMMA 6.Let sHoV If u L20T;V) ' [L*0,T;V) theru ([0, T];H).
Moreover, for any vV the real —valued function ¢t - llu(t)l|,* is weakly differentiable in
(0, T) and satisfies

%;—i{nuu?-} = U, u (2.21)

LEMMA 7. (Gronwall’s Lemma) Let &(t) be a nonnegative,summable function on [0, T]
which satisfiestheintegral inequality

£(t) < € fy E(s)ds + C, (2.22)

for constant ¢, C, =0
amost everywheret  [0.T].Then
() < C,(1+Cite“1Yaeon0 <t < T(2.23).
in particular, if
&)< €, f, é(s)dsaeon0<t<Tthen&(s) =0a.eon[0,T] (2.24)
FOR PROOF SEE [6].
LEMMA 8.The weak solution of (1.5) isuniqueif it exists.
Proof. Let u; and u, be two weak solution of (1.5). Let u = u; — u,.To prove Lemma 8
.suffices to show that u = 0 pointwise ae.on [0, T].since u(t), v + aepi)u(t), v) =0 for
anyv Vwetakev=u Vitoget

u (), u + agp ) (u(t), u) =0 (2.25)
(2.25) istrue point wisea.s .on [0, T].Using (2.1) and the coercivity estimate,we have

1d
——lull? < yllull3, u(0) =0
P T yllully, u(0)

For somey > 0.By Lemma7, lully; =0foral ¢ [0, T].Thusu = 0 pointwisea.ein [0, T].

To show existence of the weak solution of (1.5) .we first show existence and uniqueness of
approximation solution. Now we define the approximate solution of (1.5)

DEFINITION9.A functioru,,: [0, T] - V,, isan approximate solutions of (1.5) if

(i) wym L*(0,T,Vypandyu,, L*(0,T, Vy);
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(ii) forevery v € Vi, and up, (t), v H + agg o) (up (t), v) = O pointwise aein [o, T]
(ifi) uy (0) = Py

To prove the existence of approximate solution ,wetake v = u,, in
wu(t), u +appp@(t),u) =0
to get following system of ODEs
Chy, + Sy ok ck =0, ¢l (0) = g/ (2.26)
Where
C¥ HCY Hfor0<t<T.a*(t) = a(wjw)andg’ = (g, wy), forC:[0,T] -~ RY,
equation 2.24 can be written as
Cy, + A(t)Cyy = 0,Cy(0) = § (2.27)
Since
A L*(0,T; RMM forCy = ¥(Cy)-
2.25can be written as
p(Cu(®)) = G — [, A(s)Cu(s) ds (2.28)
The following lemmais immediate from contraction mapping theorem and (2.28)
LEMMA 10: Forany M N, there a unique approximate solution u,,,: [0, T] - 1, of (2.28).
The following theorem provide the energy estimate for approximate solutions.

Theoreml1l.There exist a constant Cdepending only on T and Q such that the approximate
solution u,, satisfies

W W 20,7,y + Mt oo 1) + ||umt||L2(o,T;H) < Cligly (2.29)
Proof: For every v u,, we have

jth(t), v-H+ a(\BrkJ (HM(t), v) =0.
takev ¢ u,,(t),then we have

up, (), v H + agg iy (uy (t), v) = 0.,pointwisea.ein (0, T) (2.30)
using 2.30 and the coercivity estimate We find that there exists constants
p>0y=>0
such that
22 (e lhuy i) + pe~2rthumly < 0 (2.31)
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Integrating 2.31 with respect to t,using theinitial condition wuy (0) = Py, (g), ( 2.39).

and
1P (Dl < llglly, we get
2L (e Ny I3) + pe 2/t (232

taking the supriemum over [0, T],we get
Nty W20 7.y + Nt W20 7y < Cllglly; (2.33)
Since

uy, () Vi,
we have

(up, (OV)H

vllv

e, O], = supy vy, v 20 (2.34)

Using the notion of approximate solution and boundedness of A we have

My ooty + Wt 20 70y + it [ 2 3y = CgM (2:35)

To complete the proof of weak solution, we now show the convergence of the approximate
solutions by using weak compactness argument.

DEFINITION 12: Let 1%(0,T;V ) bethedua spaceof L(0,T;V).Let f L?(0,T;V ) and
u L2(0,T;V)thenwesay uy — win L?(0,T;V) weakly if

£ f@up(®) dt - 7 f@u) dt f L2OT:V)  (236)
Lemma 13 .A subsequence {u,,} of approximate solutions u,,, converge weakly in L(0,T;V )
to a weak solution u  C([0,T]; H) n L?(0, T;V)of (15) withwu, L%*(0,T;V ).Moreover,it
satisfies

"u"Lw(O.T_:H) + "u"LZ(U.T;V) =+ "ut"LZ(UIT;H) < C"Q"H (237)

PROOF.Theorem 11 implies that the approximate solutions {u,,,} are bounded in L2(0,T; V)
and their derivatives {u,,, } are bounded in L?(0,T;V ). By the Banach-Alaoglu theorem, we
can extract a subsequence {u,,} such that

Up - U in LZ(O, T, V), Um, = Utin LZ(O: T,V )weakly(2.38)

Let = (;°(0.T) be area-vaued test function and w  Vy, for some N = V'.Replacing v by
P(Ow in (upy, (), vy + agp i (um(t), v) =0

and integrating from 0 toT, we get.
1w, (8), p(OIW dt + [ agp iy (up(t), p(e)w)dt = 0 for M = N 2.38
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taking thelimitas M - co,we get

1y (uae, (), gw), dt = [ w, w dt (2.39)

by using boundedness of ay; ). we get

13 aepi n(t), pOW)dt = [ ag ey (u(®), (H)w) dt (2.40)
using boundedness of ay ;). we get
u (), w +agipw,w)=0 (2.41)
pointwisea.ein (0, T)
snce24listrueforalw Vy
Un ., Vmand( 2.42)

isdense in V,s0 (2.42) holds for dl w ¥V . now it remains to show that u(0) = uy.using
(2.42),integrating by parts and Galerkin approximation we have

u0),w = ug,w as M - o
forevery w Vy.Thusu(0) = u,
3EXISTENCEOF OPTIMALPARAMETER

Lemmal4.Let v V .Thenthemapping (B, k) — Agzv from

:Pﬂfi = {q it (q‘B' E) € [wmins sBmax] x [Eminl’@max]]
intoV" is continuous.

Proof .Suppose thatg,, - q in R* as n - c.We denote 4 = Ay and A, = Ag, k,-We claim
that

(4, — A)vll, - 0

asn - oo, Letw Vwithllwll < 1.Then
2
| (A, —Avw |*< ] (B, — Bllu'llw'ldx)? + | I |Er1 il k||'“||W|dJC ) +| I |'E71 - k“u'“wldl’ )
R R R
2

+ | (IBy— Bllw'lIwldx)
R

< 2B = B2 | wlC2dx + [l — K | Tl + [ — k[ | lwi(x)dx - 0
_ * il a5 - oo * *
Lemma 15.Suppose that B, k, — B, kin R2, and v, —~ vweakly inV asn - «.Then A,v, -
A, weakly in v’
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Proof.Let w  V then.
(A vaw — Apw | = [(Aw, vy, — Ayv | <Ay —Aw, v+ | Aw,v, —v | (243)
Since aweakly convergent sequence is bounded, we have
| Ap — Aw, v, < lA,w — AwllV' llv, Il < cllA,w — AWV - 0
an - oo Lemma 14.The second term
A vn —v | =0
sincev,, - v weakly.

Lemmal6.Let g, Pquq. Then the solution map g - u(q) from P into C([0,T]; H) is
continuous.

Proof.Letg,, - q in quq 8 n - .SinceU(t; q) is the weak solution of (1.5) for anyg Pu4
we have the following estimate.

"uM (t; QTI)IIL“’(D.T:H) + "uM (t; qn): "LZ((!,T;V) + "th(t; q“)”LZ(O.T;H) = C"Q"H (244)
Where C is constant independent of ¢ =~ P,4. Estimate (2.44) shows that U(t; g) isbounded in
W (0, T).SinceW (0, T) is reflexive.we can choose a sub-sequence u(t; g,,) weakly convergent
to afunction z in W (0, T).The fact that u, (¢; g,,) isbounded in W (0, T) impliesthat uy, (¢, g,)
is bounded in L?(0, T; V),50 u(t; g, )weakly convergent to a function z in L?(0, T; H).Since V
is compactly imbedded in H,then by the classical compactness theorem[4] u(t; g,) - z in
L”?(0,T;H),.By (2,44) the derivative u'(t; qn,) and z' are uniformly bounded in
L*(0,T; H).Therefore  functions  {u(t; qn, ).z }:0:1 are  eguicontinuous in
C([0,T]; H)..Thusu(t; qn,) - z in C([0,T]; H) ..In particular u(t; qn,) - z(t) in H and
u(t; qn,) - z weakly in V for any t [0, T].By lemma 15,4, ] u(t; q,) - Az(t) weakly in
V' Now we see that z satisfies the equation given in definition 5,ieit isthe weak solution u(q)
The uniqueness of the weak solution implies that  u(g,) - u(g)asn - o in

C ([0, T]; H) for the entire sequence u(q,,) and not for its subsequence. Thus that u(t; gq,,) -
u(q) inC([0,T]; H) asthat q, - q in P asclaimed.

3. CONCLUSIONS

The Black-Scholes option pricing model with transaction cost was discussed, where we use an
adjusted volatility given as % = ¢%(1 — Lesgn(dZv) and a continuous random work which
generalizes the works in the literature. The parameters associated with the Black —Scholes option
pricing model with transaction cost was considered. Also the existence and unigqueness of weak
solution of Black-Scholes option price with transaction cost was studied. The continuity of
weak solution of the parameters was discussed and similar solution asin literature obtained. The
extra terms introduced in this paper is to directly model asset pricedynamics in the case when
the large trader chooses a givenstock-trading strategy.If transaction costs are taken into account
perfect replicationof the contingent claim is no longer possible. Hence, one can re-adjust the
volatility (when the investor’s preferences are characterized by anexponential utility function)in
the form;
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a? = G2 (l + (p(aze_r(f‘?')szaszV))z'

and if athe weak solution can be obtained.
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