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ABSTRACT

Filtration and enhancement of signals and images by the discrete signal-induced heap transform (DsiHT)
is described in this paper. The basic functions of the DsiHT are orthogonal waves that are originated from
the signal generating the transform. These waves with their specific motion describe a process of
elementary rotations or Givens transformations of the processed signal. Unlike the discrete Fourier
transform which performs rotations of all data of the signalon each stage of calculation, the DsiHT
sequentially rotates only two components of the data and accumulates a heap in one of the components with
the maximum energy. Because of the nature of the heap transform, if the signal under process is mixed with
a wave which is similar to the signal-generator then this additive component is eliminated or vanished after
applying the heap transformation. This property can effectively be used for noise removal, noise detection,
and image enhancement.
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1.INTRODUCTION

Filtration of discrete signals and images in certain frequency bands with the discrete Fourier
transform is extensively used in signal and image processing systems [1]-[3]. In order to process
discrete signals with the discrete Fourier transform (DFT), first the DFT of the signal is
calculated, afterwards some components of the DFT are removed or modified, and finally the
inverse of the DFT is calculated. For instance, in the alpha-rooting method which is one of the
most popular transform-based techniquesof image enhancement, the two-dimension (2-D) DFT is
modified in one or a few bright visible zones in the frequency domain[4]-[9]. The filtration of
colour images in the frequency domain by the quaternion 2-D DFT is described in [10].Many
other transforms such as elliptic Fourier transforms [11]-[13], Fibonacci Fourier transform [14],
discrete cosine transform [1,16,17], and wavelet transforms also are used for filtering signal and
images[18]-[20].The 1-D discrete Fourier transform is composed of a complex system of
rotations of the input signal around different circles with following summing of all rotated points
[21].The consequent and counter clockwise rotations of the obtained data are referred to as the
inverse DFT.The 2-D DFT represents a more complicated system of rotations since the transform
can be split by 1-D DFTs in tensor representation [22]-[26].

In this paper we analyze another system of rotations, which does not use rotation of all data on
each stage of calculations. Unlike the N-point DFT when rotations are performed only by (N − 1)
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angles uniformly distributed in the interval [0,2π), the rotations in a new system are different,
they are accomplished by angles defined by the given signal (or signals) [27]-[31]. These signals
are called the generators of the system, or the transformation, and selection of these signals is
determined by the nature of the problem under the consideration. The signal generators play an
important role in processing signals and images. The discrete unitary transformation which is
defined by such models of rotation is called the discrete signal-induced heap transformation
(DsiHT). The complete system of basic functions of the heap transformis referred to as a system
of waves generated by input signals, the waves with their specific motion in the space of
functions[27]. By the unique set of angles of rotations the energy of the processed components of
the signal-generator is moving to one heap located in one of the components of the transform. In
the case when a similar system of rotations is applied over a signal which is mixed with the
component the same as the signal-generator, this component will be eliminated at all points
except the one point where the energy of the component is transformed. For instance, when the
heap transform is generated by a sinusoidal wave, the transform removes the component of the
signal which has the frequency equal to the sine wave. Consequently the DsiHT can be used as a
linear filter, and the preliminary experimental results show that the filtration by the heap
transform is comparative with the Fourier transform method. The heap transform is fast due to
fast algorithms for any length of the signals and with less operations of multiplication when
compared with the DFT. It is notable that the calculation of the  inverse of the heap transform is
not needed, because the heap transform transfers the signal into another signal and during this
transformation the signal is filtered and the desired frequency componentsare removed.

The rest of the paper is organized in the following way. In Section 2, the definition of the heap
transform is described. Properties of the heap transform are explained in Section 3. In Sections
4and 5,the applications of the heap transform in image and audio processing are described and
examples are given.

2. Discrete Heap Transforms

In this section, the definition and examples of the DsiHT are given. The composition of the N-
point discrete heap transformation, , is based on the special selection of a set of parameters, … , , or angles, where ≥ ( − 1). The transformation is considered to be separable,
which means that there exist such transformations , , … , that

We consider the simple case when each transformation , ∈ {1,2, … , }, changes only two
components of the vector = ( ,… , ). Thus, is represented as

where the pair of numbers ( , ) is uniquely defined by k and 1 ≤ < ≤ m. The set of all
these pairs ( , ) defines the path of the transformation. For simplicity of calculations, we
assume that all first functions ( , ) in (2) are equal to a function ( , )and all second
functions ( , )equal to afunctiong( , ). The N-point transformation = ,…, is
defined by the basic transformations
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The selection of parameters , = 1: ,is based on specified vector-generators , the number
of which is defined through the so-called decision equations, to achieve a uniqueness of
parameters and desired properties of the transformation [27]. Here, we consider the case of two
decision equations with one vector-generator.

Let ( , , ) and ( , , ) be functions of three variables; φ is referred to as the rotation
parameter such as an angle, and and as the coordinates of a point ( , ) on the plane. The
function ( , , ) is parameterized and it is assumed that for a specified set of numbers , the
equation ( , , ) = has a unique solution with respect to for each point ( , ) on the plane
or its chosen subset.

The system of equations

is called the system of decision equations [21,27]. First, the value of is calculated as a function( , , )from the second equation which is called the angular equation. Then, the value of is
calculated as = ( , , ( , , )). It is also assumed that the two-point transformationis
unitary.

Example 1:Given a real number , we consider the following functions that describe the
elementary rotation:

The basic transformation is defined as the rotation of the point ( , ) to the horizontal = ,

where the rotation angle φ is calculated by

The input signal is processed in the same order, or path , as the vector-generator when
composing the heap transform. When the path is ordinary, the signal is processed as shown in
Figure 1 for the five-point signal . The first pair to be processed is ( , ), the next is ( , ),
then ( , ) with a new value of , and so on. The first component of the vector is renewed and
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participates in the calculation of all (N−1) basic transformations = , = 1 ∶ ( − 1).
Therefore we can write that = ( ) on the stage .The transform of the vector-generator x is( ) = ( , , , … , ), = ( ) . (9)

Now we consider the case when all parameters = 0, i.e., the whole energy of the vector is
collected in one heap and then transferred to the first component. In other words, we consider the
Givens rotations of vectors, or points ( , ), on the horizontal = 0. Figure 2 shows the
network of the transform of the signal = (z , z , z , … , z ) . The parameters (angles) of the
transformation are generated by the signal-generator . In the 1st level and the kth stage of the

flow-graph, the angle is calculated by the inputs ( ( ), ) where ∈ {1, − 1}and( ) = . This angle is used in the transform = to define the next component ( ) and to
transform the input signal in the 2nd level. The full graph represents a coordinated network of
transform of the vector , under the action on .

Fig.1. Signal-flow graph of determination of the five-pointtransformation by a vector= ( , , , , ) .

Fig. 2.Network of the -pointx-induced DsiHT of the signal z.

Example 2: In the = 6 case when the generator x = (1,−1,1,−1,1, −1) , the matrix of the
heap transformation generated by this vector can be written as = , with the integer matrix
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=
⎣⎢⎢
⎢⎢⎡ 1 −1 1 −1 1 −11 1 0 0 0 0−1 1 2 0 0 01 −1 1 3 0 0−1 1 −1 1 4 01 −1 1 −1 1 5⎦⎥⎥

⎥⎥⎤.
The diagonal matrix = diag{0.4082,0.7071,0.8165,0.8660,0.8944,0.9129}; the angles
are{0.7854,−0.6155, 0.5236,−0.4636,0.4205} in radians.

The six basic waves composing the matrix of the six-point heap transformation are shown in
Fig. 3. There are three stages which can be separated during the process of motion and
transformation of one basic function into another one, when starting from the wave-generator. In
part (a), the first stage, the static stage, the generator itself is lying as the basis function. The
second stage from (b) through (e), the evolution stage,is related to the formation of a new wave.

For example, the wave = [−1,1,2,0, … ,0] in (c) can be described as the sum of the wave= [1,1,0,0,… ,0] in (b) with its shift = [0,1,1,0, … ,0]as = 2 − . The last stage
(f) is the dynamical stage, when the new established wave is moving to the end of the path. This
wave is composed by two parts; the first part resembles the generator and the second part is a
splash with high amplitude.

Fig. 3.The basic functions of the six-point DsiHT.

The inverse DsiHT is described by the similar process when in the static stage the last basic
function of the DsiHT is used, as shown in Fig. 4.

Fig. 4.The basic functions of the six-point inverse DsiHT.



Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 1, May 2014

6

3. PROPERTY OF THE DSIHT

The DsiHT generated by the vector-generator x operates over the generator and the input signal z
as

It follows that the original vector-generator is almost dissolved, or eliminated, in its transform.
Since the DsiHT is the linear transformation, it is clear that if the input signal contains an
additive component similar to the generator, this component will be eliminated but its energy will
be preserved in the first point. This property of the heap transform can be illustrated on examples.
Figure 5 shows the original discrete-time signal in part a, which has been obtained by sampling
the function

at 512 equidistant time-points of the interval [0,2 ]. We consider two heap transforms generated
by the waves of frequencies = 8 and = 1 (in rad/s) which are the carrier frequencies of
the signal ( ). Two vector-generator and of length 512 each, that correspond to the sampled
waves cos(8 ) and sin(t), are shown in b. The 512-point discrete heap transform of the signal z,
which was generated by the discrete-time signal , is shown in c, and the 512-point heap
transform of the signal z, which was generated by , is shown in d. One can notice that the
transform of the signal by generator deletes (or filters) the contribution of the cosine wave of
frequency = 8. A wave of the high frequency presents with a small magnitude in the
beginning of the transform, but the remaining part is similar to the wave ( ). The application
of the transform generated by illuminates the frequency = 1 and results in a wave which is
similar to the wave (8 ).

Fig. 5. (a) Original 512-point discrete signal, (b) generators ( ) = (8 ) and ( ) = ( ), and the
512-point (c) -induced and (d) -induced heap transforms of the signal.

For comparison, the traditional method of the Fourier transform is shown Figure 6. The original
signal is shown in part a, along with the magnitude of the DFT in the small interval of frequencies
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[−0.25,0.25] in b, and the result of filtration of two low frequencies in c. This method requires
computation of the direct and inverse DFTs. We note that the fast -point DFT uses ( ) =/2(log − 3) + 2 complex operations of multiplication [21], or half of this number when the
signal is real. Therefore, the number of complex multiplications for the direct and inverse DFTs
approximately equals ( ) = 1.5 ( ) = 3 /4(log − 3) or 3 ( ) real operations of
multiplication. Here, we assume that one complex multiplication uses three (not four) real
operations of multiplication. The DsiHT uses only ( ) = 5( − 1) real multiplications, and
therefore the ratio of these numbers is estimated as ( ) = 3 ( )/ ( ) ≈ 9/20(log −3). In the considered = 512 case, the corresponding saving in operations of multiplication is
estimated as (512) ≈ 2.7.

Fig. 6. (a) The original 512-point discrete signal, (b) the magnitudeof the Fourier transform of the signal,
and (c)the signal afterfiltering the low frequencies.

It is important to note that the basic transformations = , = 1 ∶ ( − 1), that compose the
-point DsiHT can be performed without calculation of angles and trigonometric functions.

Analytical formulas can be derived for calculation of coefficients of the DsiHT [27,28]. For that,
we introduce the following notations which represent respectively the partial cross-correlation of

with the vector generator and energy of :

where = 1 ∶ ( − 1). The components of the DsiHT on thekth iteration can be expressed by
thecorrelation data as

On the final stage, the value of the first component is definedby

(a) signal z

(b) |DFT[z]|

(c) filtered signal z
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which is the correlation coefficient of the input signal with the normalized generator . For a
given generator, all values of ( , )and ( ) ( ), = 0 ∶ ( − 1), can be  calculated in
advance.One can considerthat ( , ) = 1. This calculation requires real multiplications for( , ) and 3( − 1)multiplications and divisions for ( ), = 1 ∶ ( − 1). The last

value ( ) = ( , )and the total number of real multiplications equals ( ) = 4 − 3. This
estimation allows for saving more operations of multiplication when comparing with the method
of the DFT.

We now consider another example. Figure 7 shows the -point discrete signal ( )in the interval
[0,2 ] in part a, when = 512. The noise signal is composed by three frequencies = 2,= 9, and = 32 as ( ) = cos( ) + 3 sin( ) + 5 sin( )
with 512 sampled points = ( ) ∈ [0, 2 ], = 0 ∶ 511.The noisy signal ( ) = ( ) +( )is shown in b. The mean-square-root error of this degradation is 0.1847. The magnitude of
the discrete Fourier transform of the noise is shown in c. The DFT of the noise has large values(0.2091 − 1.5275i)10 and (0.2091 + 1.5275i)10 at the frequency-points 33 = + 1 and481 = ( − ) + 1 when counted from 1 to N. The result of filtration of the high frequency of
the noise in the frequency domain is shown in d. For that, two components of the 512-point DFT
of ( ) at frequency-points 33 and 481 were zeroed, and then, the inverse DFT was calculated.
The mean-square-root error of the filtration equals 0.1062.

Fig. 7.(a) The original signal, (b) the noisy signal, (c) the magnitude of DFT of the noise, and (d) the
filtered signal.
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The results of processing the same signal by the heap transformare shown in Figure 8. In part a,
the heap transform of the noisy signal ( ) is shown when the vector-generator is the high
frequency wave sin( ), along with the filtered signal by the DFT in b, for comparison. The
large values of the DsiHT at the first points were zeroed. The mean-square-root error of the
filtration by the heap transform equals 0.1068. This error is a little greater than the error of the
DFT and the results of both transforms are very close. It is difficult to notice the difference
between these two different applications.We consider these two results of filtration in more detail.
Let us denote by ( ) and ( ) the results of the filtration by the DFT and DsiHT, respectively.
Figure 9 shows the difference signal ( ) = ( ) − ( ) in part a, along with the difference
signal ( ) = ( ) − ( ) in b. These two difference signals are shown together in c.

Fig. 8. (a) The DsiHT generated by sin( ) and (b) the method of filtration by the DFT.

A big error of the filtration by the DsiHT is in the beginning, namely in the interval (0.5,1), then it
approximates the signal ( ) with the smaller error 0.1125 than the DFT does, 0.1135.

Fig. 9.Signals (a) d ( ), (b) d ( ), and (c) d ( ) and d ( ).
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Figure 10 shows in part d the result of the heap transform of the signal in c, which is the sum of
the signal in a, and the short sine wave in b in the interval [3.0740,3.8117].

Fig. 10. (a) The 512-point discrete signal ( ), (b) short sine wave ( ), (c) degraded signal ( ) = ( ) +( ), and (c) heap transform of ( ) when the generators is ( ).
Now we assume that a signal is composed by sine waves and an impulse noise. As mentioned
above, if a wave of a frequency does not lie in the signal z then the heap transform of the
signal, [ ], which is generated by the wave , will run over the field of this wave without
change. And opposite, if the signal carries frequency then the component of the signal will be
dissolved partially in the field generated by wave of this frequency. This property can be used for
noise detection.

Fig. 11. (a) The input signal DsiHTs of the signal when the generator is (b) sin(8 ), (c) sin(4 ), and (d)
the DsiHT of the signal in (b) when the generator is sin(4 ).

(a)

(b)

(c)

(d)
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As an example, Figure 11 shows the 8192-point discrete-time signal( ) = sins(4 ) + sin(8 ) + 2[ ( − ) + ( − )]
where t∈[0, 2 ].The locations of two impulses are at the points = 4.7124and = 4.8597. In
parts b and c, the heap transforms of this signal are shown when the generators are ( ) =sin(8 )and ( ) = sin(4 ), respectively. One can see that the component of the signal with
the frequency 4 is removed from the signal in b, and the component of the signal with the
frequency 8 is removed from the signal in c. In both cases, the impulse noise is well preserved.
In part d, the heap transform generated by ( ) is applied to the filtered signal of b which
removes the frequency 4 from the signal, and it shows well the noise signal.

4. Filtration of 2-D Images

In this section, some examples which show the application of the DsiHT for filtration of noisy
images and noise detection are described. Images are two dimensional signals and are considered
as sets of rows or/and sets of columns and each individual row and /or column is processed by the
1-D signals being the generator of the heap transform. There are many other ways to process the
images.For instance, with tensor representation [21]-[26], the image is the sum of the direction
images and each of these images can be processed by the same or different DsiHTs. It means that
the image can be processed separately along different directions. It is notable that selection of the
path for the dish has an important role when the heap transform is used in image/signal
processing. Here, the simple row-wise and column-wise methods of image processing are
considered. In fact, each row or column of the image is processed by the 1-D heap transform
generated by the signal which carries the frequencies that we would like to remove from the
image. In noise detection, the original rows/columns of the image may play the role of signal
generators for the heap transformations.

The following pseudo code of row/column wise heap transform of the image of size × is
provided.

We consider different images processed by DsiHTs which are generated by the sinusoidal waves
with different frequencies. As an example, Figure 12 shows the tree image of size 256×256 in
part a, which is processed row-wisely by the 1-D heap transform generated by the sampled wavesx (t) = cos(4t) and x (t) = cos(16t) where t∈[−π,π], which are shown together in part b. The
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tree image processed by the 1-D heap transform generated by the signal x (t) of low frequencyω = 4 is shown in c. The image processed by the 1-D heap transforms generated by the signalx (t) of four times higher frequency ω = 4ω = 16 is shown in part d. The image is now
without the high frequencyω .

Fig. 12. (a) The image, (b) two cosine waves of frequencies 4 and 16, and the image processed by the
DsiHTs generated by (c) the 1st and (d) the 2nd cosine waves.

The discrete heap transform is a powerful tool for image processing and can be useful in cleaning
and repairing the images degraded with various kinds of noises. As a matter of fact the heap
transform can be designed to be a notch filter and it is able to remove unwanted signals and noises
from damaged images. Periodic noise is one of the noises that can affect the images which are
facing periodic phenomena [32]. Figure 13 shows the Barbara image in part a, along with the
image contaminated with the sinusoidal (64 ) noise along the columns in part b, and the
filtered Barbara image in c. The filtration has been accomplished by the heap transform. In fact,
each column of the noisy Barbara image is considered as the input signal z of the heap transform
and vector-generator of the heap transform equals (64 ).

Fig. 13. (a) The Barbara image, (b) the image corrupted with (64 ) along the columns, and (c)
the image filtered by the (64 )-induced heap transform.

(a) (b)

(c) (d)



Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 1, May 2014

13

Figure 14 shows another example with the clock image in part a. In part b, the image is corrupted
with the sine wave of a the high frequency, sin(64 ), along the rows. With consideration of the
wave sin(64 )as a vector generator and each row of the noisy tree image as input signal of the
heap transform, the image is filtered and the periodic noise is removed from the tree image. The
filtered image with the sine-induced DsiHT is depicted in c.

Fig. 14. (a) The clock image, (b) the image corrupted with (64 ) along the rows, and (c) the image
filtered by the (64 )-induced heap transform.

In Figure 15 the Cameraman image is shown in part a, and the image contaminated with the(64 ) wave along the rows is depicted in part b. With application of the heap transform
induced by the vector which equals (64 ), and with consideration of each row of the
corrupted image as input signal , the image is filtered and the noise is removed. The filtered
image is shown in part c.The similar filtered image is shown in part d where the imagecorrupted
with the low frequency wave (8 ) along the rows is processed by the (8 )-induced heap
transform.

Fig. 15. (a) The Cameraman image, (b) the image corrupted with sin(64t) along the rows, (c) the filtered
image by the sin(64t)-induced heap transform, and (d) the filtered image by the sin(8t)-induced heap

transform over the image corrupted with sin(8t) along rows.
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In both cases, the results with restored Cameraman images show that the heap transform removes
the periodic noise from the corrupted images; the heap transform serves here as a notch filter. As
mentioned in the previous section, the noise can be detected in a signal with the application of the
heap transform.

Figure 16 shows the Cameraman image in part a, along with the image corrupted with a Gaussian
noise with the distribution (0,0.1) in b. Each row of the original image is considered as a
vector-generator and each row of the noisy image as the input signal . After application of the
heap transform over all rows of the noisy image, the original image has been removed and only
the noise has been remained. Part c shows the detected noise.

Fig. 15. (a) The Cameraman image, (b) the image corrupted with sin(64t) along the rows, (c) filtered image
by the sin(64t)-induced heap transform, and (d) filtered image by the sin(8t)-induced heap transform over

the image corrupted with sin(8t) along the rows.

Fig. 16. (a) The Cameraman image, (b) the image corrupted with a Gaussian noise, and (c) the detected
Gaussian noise from the corrupted image with the help of the DsiHT (the noise image was scaled).

In another example, the Lena image corrupted with the (64 ) periodic noise along the 45°
direction is used. Considering the suitable vector-generator and input signal , the result is the
filtered and noise free image, or detected image noise. Figure 17 shows the original image in part
a, the noisy image in b, the filtered image in c, and the detected noise in d.
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Fig. 17. (a) Lena image, (b) the image corrupted with sin(64 )along the 45° direction, (c) the filtered image
by the sin(64 )-induced heap transform, and (d) the detected periodic noise.

5. Filtration of 1-D audio signals

Similar to images the audio signals can be processed with the help of the discrete heap
transformations. Audio signals are 1-D and the application of heap transformation on audio
signals to remove an unwanted or noise signal mixed with the original signal is done through the
consideration of an additive signal as the signal generator of the heap transform and a noisy
signal as the input signal .

Heap transformation successfully and fast removes a periodic additive noise from the original
audio signal and as a result a pure audio signal is ready for post processing. The experimental
results confirm the precise and fast function of the heap transformation for filtration of the audio
signals. The first example is depicted in Figure 18. In part a, only 256 samples of the original
audio signal are shown. In part b the audio signal is mixed with the sin(32 ) signal. In part c the
filtered signal with heap transformation is given. The result shows a perfect filtration of the
additive noise signal.

Another example is depicted in Figure 19. In part a, only 256 samples of the original audio signal
are shown. In part b the audio signal is mixed with the sin(64 ) signal. In part c the filtered signal
with heap transformation is shown. A perfect filtration of the additive noise signal is obtained.
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Fig. 18. (a) The 256 samples of the original audio signal, (b) the audio signal mixed with the wave sin(32 ),
and (c) the signal after filtering with the heap transformation.

Fig. 19. (a) The 256 samples of the original audio signal, (b) the audio signal mixed with thewavesin(64 ),
and (c) the filtered signal by the heap transformation.

6. CONCLUSIONS

The heap transformations represent a class of discrete unitary signal-induced transformations
which are defined by systems of moving functions. The movement of the basic functions which is
accomplished with rotation and angular representation is defined for the desired signal. The
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transforms are fast, because of a simple form of decomposition of their matrices, and they can be
applied to signals of any length. The heap transform can be effectively used for filtering signals
and images. If the input signal is mixed with an additive component which is similar to the
generator, this component is eliminated in the transform of the signal. When such component is
the wave of a given frequency, this wave is eliminated in the heap transform. The method of heap
transform is simple and requires less operations than the method of the Fourier transform. The
heap transformation transfers the signal into another signal and it may filter a certain frequency
during this transformation. Therefore, the calculation of the inverse heap transform is not required
when filtering the signal. The preliminary experimental results show that the filtration with the
discrete heap transform is an effective way for filtering the contaminated and damaged images
and audio signals and also for detecting noises in images and audio signals. The discrete heap
transform can also be usedeffectively in processing of color images.
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