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ABSTRACT 

 

This paper presents floating point multiplier capable of supporting wide range of application domains like 

scientific computing and multimedia applications and also describes an implementation of a floating point 

multiplier that supports the IEEE 754-2008 binary interchange format with methodology for estimating the 

power and speed has been developed. This Pipelined vectorized floating point multiplier supporting FP16, 

FP32, FP64 input data and reduces the area, power, latency and increases throughput. Precision can be 

implemented by taking the 128 bit input operands.The floating point units consumeless power and small 

part of total area. Graphic Processor Units (GPUS) are specially tuned for performing a set of operations 

on large sets of data. This paper also presents the design of a Double precision floating point 

multiplication algorithm with vector support. The single precision floating point multiplier is having a path 

delay of 72ns and also having the operating frequency of 13.58MHz.Finally this implementation is done in 

Verilog HDL using Xilinx ISE-14.2. 
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1. INTRODUCTION 
 

Floating Point numbers represented in IEEE 754 format is used in most of the DSP Processors. 

Floating point arithmetic is useful in applications where a large dynamic range is required or in 

rapid prototyping applications where the required number range has not been thoroughly 

investigated. A  Floating  point  multiplier  is  the  most  common element in most digital 

applications such as digital filters,  digital  signal processors,  data  processors and control units. 
 

There are two types of number formats present, 
 

1. Fixed point representation 

2. Floating point representation. 
 

These refer to the format used to store and manipulate numbers within the devices. Fixed point 

DSPs usually represent each number with a minimum of 16 bits. In comparison, floating point 

DSPs use a minimum of 32 bits to store each value. This results in many more bit patterns than 

for fixed point. All floating point DSPs can also handle fixed point numbers, a necessary to 

implement counters, loops, and signals coming from the ADC and going to the DAC.In general 

purpose fixed point arithmetic is much faster than floating point arithmetic. However, with DSPs 

the speed is about the same, a result of the hardware being highly optimized for math operations. 

 

  

The internal hardware of floating point DSP is much complicated than for a fixed device. Floating 

point has better precision and a higher dynamic range than fixed point. In addition, floating point 

programs often have a shorter development cycle, since the programmer doesn’t generally need to 
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worry about issues such as overflow, underflow and round-off error.Noise in signals is usually 

represented by its standard deviation. For here, the important fact is that the standard deviation of 

this quantization noise is about one-third of the gap size. This means that the signal-to-noise ratio 

for storing a floating point number is about 30 million to one, while for a fixed point number it is 

only about ten-thousand to one. In other words, floating point has roughly 30,000 times less 

quantization noise than fixed point.The important idea is that the fixed point programmer must 

understand dozens of ways to carry out the very basic task of multiplication. In contrast, the 

floating point programmer can spend is time concentrating on the algorithm the cost of the DSP is 

insignificant, but the performance is critical. In spite of the larger number of fixed point DSPs 

being used, the floating point market is the fastest growing segment. Verilog programming has 

been used to implement Floating Point Multiplier.  Tool used for programming �XILINX ISE 

SUITE 14.2 Version.  
 

2. IEEE754  FLOATING  POINT REPRESENTATION 
 

 

2.1 BASIC REPRESENTATION 
 
IEEE floating point numbers have three basic components: the sign, the exponent, and the 

mantissa. The mantissa is composed of the fraction and an implicit leading digit. The exponent 

base 2 is implicit and need not be stored. 

 

2.1.1 SINGLE PRECISION 

 
The IEEE 754 single precision binary format representation 

 
31 30  24 23  2 1 0 

 
 

 

 

Figure 1: IEEE-754 Single Precision Bit Format 

 

� = (−1)� × 2(
��
��) × (1 ∙ �)  (2.1) 

 

Where  S = Sign Bit 

             E = Exponent 

             M = Mantissa 
 

• The sign bit is as simple as it gets. 0 denotes a positive number; 1 denotes a negative 

number. Flipping the value of this bit flips the sign of the number. 

• The exponent field needs to represent both positive and negative exponents. To do this, 

a bias is added to the actual exponent in order to get the stored exponent. 

•  For IEEE single-precision floats, this value is 127. Thus, an exponent of zero means that 

127 is stored in the exponent field. A stored value of 200 indicates an exponent of (200-

127), or 73. For reasons discussed later, exponents of -127 (all 0s) and +128 (all 1s) are 

reserved for special numbers. 

• Significand is the mantissa with an extra MSB bit i.e.,1 which represents the precision 

bits of the number. It is composed of an implicit leading bit and the fraction bits.  

 

� = ���2
�� +���2

�� +⋯⋯⋯+��2
��� +��2

��� 
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2.1.2 DOUBLE PRECISION 
 

63 62  52 51  2 1 0 

  

 
 

 
Figure 2 IEEE 754 Double Precision Bit Format 

 

The sign bit is as simple as it gets. 0 denotes a positive number; 1 denotes a negative number. 

Flipping the value of this bit flips the sign of the number. 
 

• The exponent field needs to represent both positive and negative exponents. To do this, 

a bias is added to the actual exponent in order to get the stored exponent. 

• For IEEE single-precision floats, this value is 1023. Thus, an exponent of zero means that 

1023 is stored in the exponent field. A stored value of 200 indicates an exponent of 

(1023-200), or 823. For reasons discussed later, exponents of -1023 (all 0s) and +1023 

(all 1s) are reserved for special numbers. 

• Significand is the mantissa with an extra MSB bit i.e., 1 which represents the precision 

bits of the number. It is composed of an implicit leading bit and the fraction bits. 

� = ���2
�� +���2

�� +���2
�� +⋯⋯⋯+��2

��� +��2
��� 

 

 

 

Parameter 

Format 

Single Single 

Extended 

Double Double 

Extended 

P 24 >=32 53 >=64 

Emax +127 >=+1023 +1023 >=+16383 

Emin -126 <=-1022 -1022 <=-16382 

Exponent 

bias 

+127 Unspecified +1023 Unspecified 

Exponent 

width in bits 

8 >=11 11 >=15 

Format 

width in bits 

32 >=43 64 >=79 

 
 

Table 1: Summary of Format Parameters 

 

2.2 ROUNDING MODES 
 
Rounding takes a number regarded as infinitely precise and, if necessary, modifies it to fit in the 

destination's format while signaling the inexact exception. The rounding modes affect all 

arithmetic operations except comparison and remainder. The IEEE-754 floating-point standard 

defines three rounding modes. 

 

 

S E 

M
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2.2.1 ROUND TO NEAREST 

  
An implementation of this standard shall provide round to nearest as the default rounding mode. 

In this mode the representable value nearest to the infinitely precise result shall be delivered; if 

the two nearest representable values are equally near, the one with its least significant bit zero 

shall be delivered. However, an infinitely precise result with magnitude at least 2Emax (2 – 2–p ) 

shall round to INFINITY with no change in sign. 

 

2.2.2 DIRECTED ROUNDING 

 
An implementation shall also provide three user-selectable directed rounding modes: round 

toward +INFINITY, round toward –INFINITY, and round toward 0. When rounding toward 

+INFINITY the result shall be the format's value (possibly +INFINITY) closest to and no less 

than the infinitely precise result. When rounding toward –INFINITY the result shall be the 

format's value (possibly –INFINITY) closest to and no greater than the infinitelyprecise result. 

When rounding toward 0 the result shall be the format's value closest to and no greater in 

magnitude than the infinitely precise result. 

 

2.2.3 ROUNDING PRECISION 

 
Normally, a result is rounded to the precision of its destination. However, some systems deliver 

results only to double or extended destinations. On such a system the user, which may be a high-

level language compiler, shall be able to specify that a result be rounded instead to single 

precision, though it may be stored in the double or extended format with its wider exponent range. 

Similarly, a system that delivers results only to double extended destinations shall permit the user 

to specify rounding to single or double precision.  

 

2.3 SPECIAL VALUES  
 

The IEEE-754 floating-point  standard  specifies  four  kinds  of  special  values 

 

2.3.1 SIGNED ZERO 

 
Since the floating-point number is a sign-magnitude representation, both positive and negative 

zeros exist. The two values are numerically equal, whereas some operations  produce different 

results depending upon the sign bit. 

 

e.g., 1 / (+0) = ∞    and     1 / (–0) = –∞ 

 

2.3.2 SUB NORMAL NUMBERS 

 

A subnormal number  represents  a  value  of  the  magnitude which is  smaller  than  the  

minimum normalized number by  denormalizing  the  significand,  which  means  the  MSB  of  

the significand is “0”. It improves the precision of the numbers that are close to zero so that the 

values can be represented when underflow occurs. 

 

2.3.3 INFINITY ARITHMETIC  

 

Infinity arithmetic shall be construed as the limiting case of real arithmetic with operands of 

arbitrarily large magnitude, when such a limit exists. Infinities shall be interpreted in the affine 

sense, that is, –INFINITY < (every finite number) < +INFINITY. The exceptions that do pertain 

to INFINITY are signaled only when 
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1. INFINITY is created from finite operands by overflow or division by zero, with 

corresponding trap disabled. 

2. INFINITY is an invalid operand. 

 
2.3.4 NANS  (NOT-A-NUMBERS) 

 
Two different kinds of NaN, signaling and quiet, shall be supported in all operations. 

SignalingNaNs afford values for uninitialized variables and arithmetic-like enhancements that are 

not the subject of the standard. Quiet NaNs should, by means left to the implementer’s discretion, 

afford retrospective diagnostic information inherited from invalid or unavailable data and results. 

Propagation of the diagnostic information requires that information contained in the NaNs be 

preserved through arithmetic operations and floating-point format conversions. 

 

2.4 EXCEPTIONS  
 

2.4.1 INVALID OPERATION 

 

The invalid operation exception is signaled if an operand is invalid for the operation to be 

performed. The result, when the exception occurs without a trap, shall be a quiet NaN provided 

the destination has a floating-point format. The invalid operations are 

 

1. Any operation on a signaling NaN. 

2. Addition or subtraction – magnitude subtraction of infinities such as 

(+INFINITY) + (–INFINITY) 

3. Multiplication – 0 × INFINITY 

4. Division – 0/0 or INFINITY/INFINITY 

5. Remainder – x REM y, where y is zero or x is infinite. 

6. Square root if the operand is less than zero 

 
 

 
 

 
 

 

 

 

 

 

2.4.2 DIVISION BY ZERO 

 
If the divisor is zero and the dividend is a finite nonzero number, then the division by zero 

exception shall be signaled. The result, when no trap occurs, shall be a correctly signed 

INFINITY. 

 

2.4.3 OVERFLOW 
 

The overflow exception shall be signaled whenever the destination format's largest finite number 

is exceeded in magnitude by what would have been the rounded floating-point result were the 

exponent range unbounded. The result, when no trap occurs, shall be determined by the rounding 

mode and the sign of the intermediate result as follows: 
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1. Round to nearest carries all overflows to INFINITY with the sign of the intermediate 

result 

2. Round toward 0 carries all overflows to the format's largest finite number with the sign of 

the intermediate result 

3. Round toward –INFINITY carries positive overflows to the format's largest finite 

number, and carries negative overflows to –INFINITY 

4. Round toward +INFINITY carries negative overflows to the format's most negative finite 

number, and carries positive overflows to +INFINITY. 

 

2.4.4 UNDERFLOW 

 
Two correlated events contribute to underflow. One is the creation of a tiny nonzero result 

between ±2Emin which, because it is so tiny, may cause some other exception later such as 

overflow upon division. The other is extraordinary loss of accuracy during the approximation of 

such tiny numbers by denormalized numbers. The implementer may choose how these events are 

detected, but shall detect these events in the same way for all operations. Tininess may be 

detected either 

 

1. After rounding - when a nonzero result computed as though the exponent range were 

unbounded would lie strictly between ± 2Emin 

2. Before rounding - when a nonzero result computed as though both the exponent range and 

the precision were unbounded would lie strictly between ± 2Emin. 

 

3. SIMULATION RESULTS 
 
3.1 EXOR OUTPUT 

 

 
 

3.2 Half Adderoutput 

 

 

 
 

3.3 Full Adder Output 
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3.4 Ripple Carry Adder Output  

 

 
 

3.5 Ripple Borrow Subtractor Output 

 

 
 

3.6 Normalizer Output 

 

 
 

3.7 Unsigned Multiplier Output 
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3.8 Floating point Multiplier Output (60×-6.5) 

 

DESIGN SUMMAR 
 

 
 

3.9 SYNTHESIS result for single precision floating point multiplier 
 

 
 

3.10 synthesis result for double precision floating point multiplier 
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4. CONCLUSION AND FUTURE SCOPE 
 

This paper presented an implementation of a floating point multiplier that supports the IEEE 754-

2008 binary interchange format. A methodology for estimating the power and speed has been 

developed. This Pipelined vectorized floating point multiplier supporting FP16, FP32, and FP64 

input data and reduces the area, power, latency and increases throughput. Precision can be 

implemented by taking the 128 bit input operands. Register Transfer Logic has developed for 

Double precision Floating Point Multiplier further simulation results can be implemented. The 

performance of the Floating point multiplier can be increased by taking the 256 bit input bus 

instead of the 128 bit bus. The throughput and area optimization can be improved by using more 

general significant multipliers and exponent adders. Two 53 bit multipliers and two 24 bit 

multipliers are used to compute the significants of all supported Floating point formats 
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