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ABSTRACT 

 

Bearings-only tracking using the modified gain extended Kalman filter (MGEKF) configured in Cartesian 

coordinate systems is reviewed. A new tracking approach is proposed which consists of a set of weighted 

MGEKFs each with a different initial range estimate and this is referred to as the range-parameterized 

(RP) tracker. This new approach overcomes the problems exhibited with existing MGEKF trackers.  

 

Results are presented for a typical tracking scenario, involving a manoeuvring observer and a constant 

velocity target. The results show that the RP tracker gives stable, consistent and unbiased estimates in all 

the cases considered. Although only constant velocity target trajectories have been considered in this 

paper, the RP tracker provides a natural framework for consideration of manoeuvring targets.  

 

1. INTRODUCTION 

 
The objective of bearings-only tracking is to determine the trajectory of the target based on a time 

series of bearing measurements from a single observer. It is assumed that the motion of the target 

is constrained to be a straight line, constant-speed segments separated infrequently by 

manoeuvres in course and speed. The tested data in this paper are drawn from the sonar 

environment where we are only having the bearing information related to target which are used 

for finding the parameters like range, course and speed of the target. On the prior knowledge of 

the target motion, we are initializing the inputs of the target However; the results are also 

applicable to the radar environment where a faster update rate compensates for the higher target 

speeds. The use of the extended Kalman filter for bearings- only tracking is a widely researched 

topic. 

 

Here the paper is in passive sonar environment, with the bearing only information we are 

predicting the target position and direction. On the prior knowledge of the target motion, range 

parameterized tracker gives better solution, increases stability and accuracy. It is assumed that 

own ship manoeuvres in course and speed and target move in a straight line with a constant 

velocity. Initially error will be more while tracking the target, using MGEKF and RPEKF the 

error is reduced and tracks the target accurately ,as we update the solution  the error will be 

reduced gradually, slowly after some updates we get the desired solution and the solution 

converges. Kalman Filter is a minimum variance Estimator. It applies only to linear systems. (The 

measurements and state estimates must be linearly related).  
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The Kalman Filter is a computationally, highly efficient algorithm. Kalman Filter is defined as 

the minimum mean square estimator in recursive processing. The main aim is to reduce the 

variance that is diagonal elements of the covariance matrix. That’s why kalman filter is the 

optimal estimator in the given situation. It can be applied to non-linear systems. The result is what 

is called “Extended Kalman Filter”. However, most of the systems what we come across in our 

practical life are non-linear. The non-linearity can be associated either with the process model or 

with the observation model or with both. Extended kalman filter is similar to the kalman filter, 

it is applied to non linear systems, using EKF we approximate non linear systems into linear 

systems and the remaining process is almost similar to KF. Unlike its linear counterpart, the EKF 

is not an optimal estimator. In addition, if the initial estimate of the state is wrong, or if the 

process is modeled incorrectly, the filter may quickly diverge, owing to its linearisation. Another 

problem with the EKF is that the estimated covariance matrix tends to underestimate the true 

covariance matrix and therefore risks becoming inconsistent in the statistical sense without the 

addition of “stabilising noise”. 
 

Having stated this, the EKF can give reasonable performance, and is arguably the de facto 

standard in navigation systems and GPS. The fundamental flaw of EKF is that the distributions or 

densities of various random variables are no longer normal after undergoing their respective 

nonlinear transformations. The EKF is simply an adhoc state estimator that only approximates the 

optimality of Baye’s rule by linearization.EKF Gain update equation is given by: 

 
1)( −−− += T

kkk
T
kkk

T
kkk VRVHPHHPK ---(i)

 

An important feature of EKF is that the Jacobian HK in equation for kalman gain KK serves to 

correctly propagate or magnify only the relevant component of measurement information. If there 

is a one-to-one mapping between measurement and state via h Jacobian HK affect Kalman gain. If 

in overall measurements there is no one-to-one mapping between measurement and state and the 

filter will quickly diverge. So the process is unobservable.     

 

EKF exhibits unstable behaviour characteristics when applied to bearings-only target motion 

analysis. Anomalies such as premature covariance collapse and solution divergence have been 

observed even under favorable operating conditions. To circumvent these difficulties, Modified 

Gain Extended Kalman Filter (MGEKF) algorithm is used. 

 

Since TMA (target motion analysis) estimation process is unobservable for constant own ship 

motion, it is not surprising that all components of solution vector typically contain bias errors 

prior to first own ship maneuver. However, once this maneuver requirement is satisfied, it is 

shown that only the estimated range vector will remain biased, the corresponding velocity 

estimates become asymptotically unbiased. It reveals that this residual range bias is highly 

dependent upon geometry and can be significantly altered by subsequent own ship maneuvers. 

Moreover, the optimum maneuver strategy for bias reduction is seen to simultaneously enhance 

overall tracking performance thus undesirable or inconsistent tactics are avoided. Therefore 

modified gain extended kalman filter (MGEKF) is used.EKF is difficult to tune and often gives 

unreliable estimates if system non-linearities are severe. This is because EKF depends on 

linearization to propagate the mean and covariance of state. 

The problem with nonlinear system is that it is difficult to transform a probability density 

function through a general nonlinear function. We were able to obtain extract nonlinear 

transformations of mean and covariance, but only for a simple two dimensional transformation. 

The EKF works on the principle that a linearized transformation of means and covariances is 
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approximately equal to true nonlinear transformation but the approximation could be 

unsatisfactory. 

 

2. MATHEMATICAL MODELLING: 
 

2.1.Target Motion Parameters:  

The derivation of the modified gain function of Song and Speyer's extended Kalman filter is 

slightly modified as follows. Let the target state vector be Xs(k) 

Xs(k)= [ ])()()()( kRykRxkykx ---(ii) 

where x(k) and y(k) are target velocity components and, Rx (k) and Ry (k) are range components 

respectively. 

The target state dynamic equation is given by eq  

Xs(k+1)= )()1()( kkbkXs ω+++Φ      ---(iii) 

where Φ  and b are transition matrix and deterministic vector respectively. The transition matrix 

is given by 
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 Where xo and yo are observer position components. The plant noise, ω (k) is assumed to be zero 

mean white Gaussian with E [ω) (k}ω(j)] = Q δ kj. True North convention is followed for all 

angles to reduce mathematical complexity and for easy implementation. The bearing 

measurement, Bm is modeled as 

 

Bm (k+1) =tan
-1

(Rx(k+1)/Ry(k+1))+ζ (k)----(iv) 

Where ζ (k) is error in the measurement and this error is assumed to be zero mean Gaussian with 

variance. The measurement and plant noises are assumed to be uncorrelated to each other. eq. 

below is a non-linear equation and is linearized by using the first term of the Taylor series for Rx 

and Ry. The measurement matrix is obtained as 
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Since the true values are unknown, the estimated values of Rx and Ry are used in (presented in 

above equation). The covariance prediction is 
TT

kQkkkkPkkkkP Γ+Γ++Φ+Φ=+ )1()/1()/()/1()/1(            ---(vi)                 

The Kalman gain is 
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The state and its covariance corrections are given by 

))]/1(,1()1()[1()/1()1/1( kkXkhkmBkGkkXkkX ++−++++=++   ----(viii) 

Where h (k+l, X (k+l|k) is the bearing using predicted estimate at time index k+l, 
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Where g(.) is modified gain function. The value of g is 
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Since the true bearing is unavailable in practice, it is replaced by the measured bearing to 

compute the function- g (.). 

 

2.2. RANGE PARAMETERIZED (RP) tracker 

 
The new tracking approach proposed in this project is to commence tracking with a number of 

independent EKFs, each with a different initial range estimate. At each update the filters are 

weighted for their consistency with the measured bearing. After a number of updates the 

likelihood of some of the filters will fall below a threshold and will no longer be processed. How 

quickly this happens depends on the scenario geometry, the observer and target trajectories and 

the number and type of observer manoeuvres. In good tracking conditions, the correct filter will 

dominate very quickly and within a short time it will be the only filter being processed. 

 

Here we are using set of independent filters, with initializing different scenarios; it is observed 

that 1the tracking accuracy depends on the initializing scenario. RP tracker is used to give stable 

tracking performance in the majority of conditions. In principle the methodology of the RP 

tracker could be applied to any coordinate system (Cartesian, polar and variants of modified 

polar). However, the number of cells into which the range has to be parameterized in order to 

give acceptable tracking performance varies according to the coordinate system in which it is 

implemented. 
 

 Updating the weights 

 

The state and covariance estimates of each independent EKF tracker are updated at each bearing 

measurement. In addition, the cell weightings are updated using Bayer’s theorem, based on the 

assumption that the forecast and measured bearings are Gaussian with zero mean error. The basic 

idea is to use a number of independent EKF trackers in parallel, each with a different initial range 

estimate. To do so, the range interval of interest is divided into a number of subintervals, and each 

subinterval is dealt with an independent EKF. To determine how the state estimates of parallel 

filters are combined, we need to compute the weights associated with each EKF. 

The weight of filter i at time k is given by:     
j
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Where )/( izp k  is the likelihood of measurement kz , given that the target originated in 

subinterval i. If one uses N parallel filters, in the absence of prior information about the true 
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target range, all initial weights w are set to 1/N.Typically; in the RP-EKF one uses EKFs in the 

Cartesian coordinates. Then, assuming Gaussian statistics, the likelihood can be computed as   
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--- (xii) 

The exponential term ensures that the cell receives low weighting because of large variation 

between the forecast and measured bearing compared with the combined standard deviation. 

Conversely, a small difference implies much better tracking and the cell receives a higher 

weighting. The speed with which the cell containing the true target position approaches a 

weighting of unity depends on the degree of range observability in the tracking scenario being 

considered. In a good tracking scenario the correct cell will dominate very quickly.   
 

3. Results 
 

ERROR THAT IS TOLERATED: 

±10%, in range estimate. 

± 0.5 DEG, in bearing estimate. 

± 5   deg, in course estimate. 

± 2   knots, in velocity. 

 
Table 5.1: True and Predicted Values of   Target 

 

 

 

 

 

 

 

 
 

Table 5.2: Minimum Errorsof The Scenario 
    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Converge 

time 

(seconds) 

True 
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(meters

) 

Predicte

d 

Range 

(meters) 

Target 

bearing 

(deg) 

Predict 

bearing 

(deg) 

 

150              

 

3705.24        

 

3753.30  

 

66.49 

 

66.76 

Scenario Min range error 

(meters) 

 

Min bearing 

 error 

(deg) 

Min course  

error 

(deg) 

Min 

speed error 

(knots) 

1 0.0020 0.0000 0.0001 0.0000 

Target 

course 

(deg) 

predict 

course 

(deg) 

target 

velocity 

(knots) 

Predict 

Velocity 

(knots) 

 

120.00             

 

123.91        

 

15.4   

 

15.35 
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DURATION OF RUN IS 800 SECONDS 

 

SCENARIO 

RANGE 4000.00(MTS) 

BEARING 45.00(DEG) 

TCR 120.00(DEG) 

SIGMAB 0.33 

VT 15.45(KNOTS) 

VO 10.30(KNOTS) 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Tracking Using RPEKF     Fig. 2. Tracking Using MGEKF 

For the scenario: RPEKF converges faster than MGEKF. So, RPEKF gives better solution than MGEKF 

                                              

 

                

 

 

 

 

 

 

 

Fig. 3. Range Error                    Fig. 4. Bearing Error 

 

 

 Fig. 5. Course Error           Fig. 6. Bearing Error 
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4. Conclusion 

 

The new tracking approach, referred in this paper as the range-parameterized (RP) tracker which 

gives considerably better tracking performance than the MGEKF. In particular, the RP tracker 

gives significantly lower range errors than the other trackers. The major advantage of the RP 

tracker over the MGEKF trackers is that, it divides the large prior range uncertainty region into a 

number of smaller cells. This provides the prior knowledge of the target velocity, this prevents 

tracker instability and can allow the range to be inferred even before the first observer 

manoeuvres. In this work, a passive sonar environment with the bearing only information is 

considered by predicting the target position and direction. On the prior knowledge of the target 

motion, range parameterized tracker gives better solution, increases stability and accuracy. 
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