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ABSTRACT

In this paper we analyzed redistribution of dopant in a multilayer structure during overgrowing of doped
area. We analyzed the effect of changing of regimes of overgrowing of the doped area on the redistribution
of dopant (changing of speed of overgrowth, changing of temperature of overgrowth). We introduce an
analytical approach for analysis of redistribution of dopant. The approach gives a possibility to simultane-
ously taking into account the changing of parameters of the considered process (diffusion coefficient of
dopant and radiation defects, limit of solubility of dopant, parameters of interaction between radiation
defects) in space (due to presents of several layers in the considered multilayer structure) and time (due to
variation of temperature of overgrowth in time), as well as nonlinearity of the mass transport (due to inter-
action between radiation defects and dopant).
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1. INTRODUCTION

Currently, one of the intensively solved issues of solid-state electronics is increasing of perfor-
mance of electronic devices: diodes, field-effect and bipolar transistors, ... and increasing of their
density in the framework of integrated circuits. Refs. [1-6] describe manufacturing of integrated
circuits. To increase the performance of the considered devices, it is possible to use materials
with larger values of charge carrier mobility (Refs. [7-10] describe properties of materials) and
new technological processes or modification of existing processes (one of the ways to decrease
size of elements of integrated circuit is their manufacturing in the framework of thin-film multi-
layer structures [3-5,11]). In this case, inhomogeneity of multilayer structures was used, but it is
necessary to optimize doping of electronic materials (Refs. [12] describe the considered optimiza-
tion of technological process), as well as the development of epitaxial technology in order to im-
prove properties of these materials (including the analysis of mismatch-induced stresses). Refs.
[13-15] describe epitaxial technology. An alternative way to decrease dimensions of elements of
integrated circuit is using of laser and microwave types of annealing. Laser and microwave types
of annealing were described in Refs. [16-18]. In this paper we consider a two-layer structure,
which consist of a substrate and an epitaxial layer (see Figure 1). A dopant was implanted into
the epitaxial layer to produce the required type of conductivity in the layer. After that we consider
high-temperature overgrowth of the epitaxial layer. Such an overgrowth would make it possible
not to anneal radiation defects generated during implantation of dopant. The main aim of this pa-
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per is analysis of redistribution of dopant diring overgrowth. The accompanying aim of this paper
is to formation of an analytical approach for analysis of mass transfer with account changes in its
parameters in space and time, as well as its nonlinearity.

f(x)

Overlayer
Epitaxial layer
Substrate

Fig. 1. Considered multilayer structure with substrate, doped epitaxial layer and overlayer
2. METHOD OF SOLUTION
To solve our aims we will calculate the distribution of dopant in space and time in the considerate

multilayer structure and analyze it. The distribution of concentration of dopant C (x,t) in space
and time was calculated by solving Fick's second law (see the law in Refs. [1,15-17])

oC(xt)_ o DﬂC(x,t) | O
ot o X O X
with boundary and initial conditions
2t o, 26K g, cx0pt @
O’,X X=—vt O’)X x=L

where D (x) is the diffusion coefficient of dopant in the considered multilayer structure; v is the
speed of overgrowth of epitaxial layer. Spatial distribution of the dopant diffusion coefficient de-
pends on properties of layers of the considered multilayer structure; changing of temperature of
overgrowth; redistribution of radiation defects, which were generated during ion implantation of
dopant

SR F?:((xxfml”lvéx*'t)*“ G o

where D.(x,T) is the spatial (due to inhomogeneity of multilayer structure) and temperature (with
account Arrhenius law) dependences of diffusion coefficient; T is the temperature of overgrowth;
P (x,T) is the limit of solubility of dopant; parameter  describes average quantity of charged de-
fects interacted with atom of dopant and could be integer in the following interval y €[1,3] (the
dependence was described in details in [18]); function V (x,t) is the distribution of concentration
of radiation vacancies space and time with equilibrium distribution V. Concentrational depend-
ence of diffusion coefficient of dopant was considered in details in [18]. In this situation the
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boundary problem (1)-(3) gives a possibility to analyze the considered process in more common
case in comparison with models in Refs. [1,16,17,19]. We determine distribution of concentration
of radiation defects in space and time by solving of the following system of equations (the con-
sidered equations were considered in details in Refs. [1,16,17,19])

a1 (x,t)zi{Dl (x,T)a'a(i’t)}—k.,.(x,T)lZ(X,t)—k'vv(X’T)'(X't)v(x’t)

ot o X

4)
A2 Lo, ) P i () () 1V )
with boundary and initial conditions
A1(xt) zo,ﬁl(x,t) _ ,av(x,t) _ ,ﬂV(x,t) _o,
oX | .. ox |, X | _w ox |
I (0)=fi (x), V (x.0)=fv (x). ()

Function | (x,t) describes distribution of concentration of radiation interstitials in space and time
with equilibrium distribution I”; Di(x,T), Dv(x,T) are the diffusion coefficients of interstitials and
vacancies; terms V(x,t) and I1%(x,t) correspond to generation divacancies and diinterstitials (see
[17] and appropriate references in this book); function kiv(x,T) is the parameter of recombination
of point radiation defects; functions kii(x,T) and kv,v(x,T) are the parameters of generation of sim-
plest complexes of point radiation defects. In this situation the boundary problem (4)-(5) gives a
possibility to analyze the considered process in more common case in comparison with models in
Refs. [1,16,17,19]. Distributions of concentration of divacancies @v(x,t) and analogous complex-
es of interstitials @i(x,t) in space and time were determined as solution of the following system of
equations (the considered equations were considered in details in Refs. [16,17,19])

o®,(xt) =i{Dm. (X,T)M’I_(X’t)} K, OGT)2(x, )+ K, (%, T)1(x.t)

ot OX X
so,(xt) o o0, (1) 2 ©)
725 D‘Dv (X,T)T +kV,V(X’T)V (X,t)+ kV(X,T)V (X,t)
with boundary and initial conditions
oo, (k) _g AP () ookt _ o oo, (k) g -
X x=-vt ’ ﬁx x=L , X X=-Vt , X x=L o

@D (x,0)=fa1 (X), Dv (X,0)=fav (X).

Here Dai(x,T) and Dav(X,T) are the diffusion coefficients of complexes of point radiation defects;
ki(x,T) and kv(x, T) are the parameters of decay of the considered complexes. In this situation the
boundary problem (6)-(7) gives a possibility to analyze the considered process in more common
case in comparison with models in Refs. [16,17,19].

To analyze redistribution of dopant in different regimes of overgrowth of epitaxial layer one shall
to calculate solution of Eq. (1). It is attracted an interest replacement of variations x and t and dif-
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fusion coefficients by dimentionless variables y and 9 and normalized diffusion coefficients:
X—y=(x+vt)/L, t—> 9=tDo/L? and Ac=Dv(x,T)/Do, where Dy is the average value of dopant diffu-
sion coefficient. Using the considered replacement leads to transformation of Eq. (1) to the fol-
lowing form

- T oy D, J9

oC(z,9) o {A (IT\ﬁc(;(,g)}rEac( 9 (1a)
o9 oyl

Boundary and initial conditions dimentionless variables takes the form

€9 _y €I 4 0=y (22)
oy ox

2=0 z=1-v /L

One can neglect by term v t /L in comparison with 1 near boundary x=L (i.e. y =1-v t /L) of the
considered multilayer structure. The approximation gives a possibility to re-write the second
boundary condition in the following form o C (y,9)/0y |,=1~ 0 and to analyzed redistribution of
dopant in the considered moving area with the single length. The considered replacement of vari-
able leads to the following transformation of Egs. (4) and (6) and appropriate conditions

ol (r,9) & [AI(I,T)O’W( "9)}&5'( ,9)
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o | x| dx | o dx .

D (7,0)=fa1 (7), v (7,.0)=fav (7).

To estimate distribution of dopant in space and time analytical approaches of solution attracts
priority interests in comparison with numerical one due to higher visibility. We used the method
of averaging of function corrections (the approach was considered in details in Refs. [15,20]) to
solve Egs. (1a), (4a), (6a). In the framework of the approach we replace the required concentra-
tions in right sides of the considered equations on their not yet known average values ca,. In this
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case we obtain equations to calculate the first-order approximations for considered functions.
They could be written in the following form

o), )
o8

% - _alzl kI,| (ZnT)_allalvkl,v (X'T)
(4b)

% - _ali/ kV,v (Z:T)_all aleI,V (Z’T)

20uL9) i () (8) k(T 129)
(6b)

P02 ) i (TN, (T (109

Integration of left and right sides of the above equations on normalized time & gives a possibility
to obtain the first-order approximations of the considered approximations in the final form

C.(2.9)=f(x) (Lc)
I1(Zv‘9): f, (Z)_alzl ]?kl,l (Z’T)d Ty, 0y fkl,v (Z!T)d 4
09 09 (4c)
Vl(}(v‘g): fy (Z)_alilb[kv,v (Z’T)d T=0, 0y .([kl,v (ZvT)d 4
@, (2.9)= Ty, (TN (ed e+ [k (2T () o+ 6, ()
p Y, (6c)
@y (7,9)= Tk (1 TV (2)d 7+ [k, (1 TV (zr7)d 7+ fo, (7)

Average values of the first-order approximations of concentrations of dopant and radiation de-
fects could be determined by using the following standard relation (the relation was considered in
details in Refs. [15,20])

alpzéj:;‘:pl( ,:9)d;(d19, (8)

where @ is the continuance of monitoring of the technological process. Substitution of functions
(1c), (4c) and (6¢) into relation (8) gives a possibility to obtain relations for not yet known aver-
age values of the considered concentrations on the following form

1

1 \/(1+ba1v)2_4a|£f|(l)dl_(l+balv)

alczgf(l)dl’au: 2a '
|

3 2 3 2 3 _(h_ _
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4 2 W27 4 2 2pp?+(2aa, -b*f]
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1 1

where a_ :?(1—gj}kp7p(;(,T)d;(dl9, b:?[l—gjjk,vv(;(,T)dng, pz[l—zijj f,(x)dyx

0 0 0 0 AY
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S e Rt
oo (-]
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To calculate the second-order approximations of concentrations of dopant and radiation defects
one shall to replace the considered functions in the right sides of Egs. (1a), (4a), (6a) on the sum
of the not yet known average values of the considered approximations and approximations with
the previous order. Analogous way could be used to calculate approximations with higher orders
(larger, than 2). Equations to calculate the considered second-order approximations could be writ-
ten as

ﬁcz(lvg) o {AC(Z,T){].-F@’[&ZC+C1(I’3)]y}{l+glv(l’3) VZ(Z,;Q) %

09 oy P (1. T) v
Xacl(z,g)}+g 9C,(2.9) ad)
dy D, 29
21,(.9)_ o 'AI(Z,T)o”Il(z,s)}gml(z,s)_
084 x| oy D, 28

-k, (}(,T)[OCZ, + Il(l’lg)]z =Ky (;(,T)[OIZ, + |l(;(,19)][a2\, +V1(Z"9)]
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(4d)
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0

Integration of the left and right sides of the obtained equations on time gives a possibility to ob-
tained the second-order approximations of the considered approximations in the following form

V(z.7) VZ(z.7) 501(75'7)dr+

O 9
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Average values of the considered second-order approximations of the considered concentrations
could be calculated by using the following standard relation

@, =< 1llp. 0 9)- pi2:9)]d 2 9. (10)

Substitution of relations (1e), (4e), (6e) into relation (10) gives a possibility to obtain relations for
the considered average values

vL-D, !
o, =——If(x)dz, (1)
0
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In this paper the considered concentrations of dopant and radiation defects were calculated as the
second-order approximations in the framework of method of averaging of function corrections.
The approximation is usually enough adequate approximation to obtain qualitative conclusions
and some quantitative results. Results of analytical calculations were checked by their compari-
son with results of numerical simulation.

3. DISCUSSION

In this section we analyzed redistribution of dopant and radiation defects in the considered multi-
layer structure. Fig. 2 shows distributions of concentrations of dopant at small speed of over-
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growth. Increasing of number of curves corresponds to increasing of temperature. One can find
similar curves at small value of continuance of overgrowth.

Fig. 3 shows distributions of concentrations of dopant at large speed of overgrowth. Increasing of
number of curves corresponds to increasing of temperature. One can find similar curves at large
value of continuance of overgrowth.

101 1
2

8_

C(x,1)

0 — T T T T T T
-2 0 2 4 6 8 10

Fig. 2. Distributions of concentration of dopant at small speed of overgrowth. Increasing of number of
curves corresponds to increasing of temperature. Distributions of concentration of dopant at small continu-
ance of overgrowth are the similar to presented on this figure

C(x.1)

Fig. 3. Distributions of concentration of dopant at large speed of overgrowth. Increasing of number of
curves corresponds to increasing of temperature. Distributions of concentration of dopant at large continu-
ance of overgrowth are the similar to presented on this figure

4. CONCLUSION

We analyzed redistribution of dopant in a multilayer structure during overgrowing of area doped
by ion implantation. We analyzed the effect of changing of regimes of overgrowing of the doped
area on the redistribution of dopant (changing of speed of overgrowth, changing of temperature
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of overgrowth). We introduce an analytical approach for analysis of redistribution of dopant. The
approach gives a possibility to simultaneously to take into account the changing of parameters of
the considered process (diffusion coefficient of dopant and radiation defects, limit of solubility of
dopant, parameters of interaction between radiation defects) in space (due to presents of several
layers in the considered multilayer structure) and time (due to variation of temperature of over-
growth in time), as well as nonlinearity of the mass transport (due to interaction between radia-
tion defects and dopant).
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