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ABSTRACT 
 
We introduce an approach for increasing of density of field-effect heterotransistors in the framework of a 

CMOS operational transresistance amplifier based square wave generator. Based on the approach we 
consider manufacturing the considered amplifier in a heterostructure with the required configuration. Sev-

eral required areas of the heterostructure should be doped by diffusion or ion implantation. After that do-

pant and radiation defects should by annealed in the framework of an optimized scheme. We also consider 

an approach to decrease value of mismatch-induced stress in the considered heterostructure. We introduce 

an analytical approach to analyze mass and heat transport in heterostructures during manufacturing of 

integrated circuits with account mismatch-induced stress. 
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1.  INTRODUCTION 
 

Currently some problems of the electronics of the solid state solving with high rate [1-6]. To in-
crease performance of electronics of the solid state devices it is necessary to determine materials 

with larger mobility of carriers of charge [7-10]. One way to decrease dimensions of elements of 

integrated circuits is manufacturing them in thin film heterostructures [3-5,11]. In this case it is 

possible to use inhomogeneity of heterostructure and necessary optimization of doping of elec-
tronic materials [12] and development of epitaxial technology to improve these materials (includ-

ing analysis of mismatch induced stress) [13-15]. An alternative approaches to increase dimen-

sions of integrated circuits are using of laser and microwave types of annealing [16,17]. 
 

We consider a method of optimization of manufacturing of transistors in a CMOS operational 

transresistance amplifier [18]. The optimization leads to increase integration rate of transistors. 

The approach gives a possibility to decrease their dimensions with increasing their density. We 
also consider possibility to decrease mismatch-induced stress to decrease quantity of defects, 

generated due to the stress. In this paper we consider a heterostructure, which consist of a sub-

strate and an epitaxial layer (see Fig. 1b). We consider the third layer in the heterostructure: buff-
er layer between epitaxial layer and substrate (the buffer layer is usually help to decrease mis-
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match-induced stress). The epitaxial layer includes into itself several sections, which were manu-
factured by using another materials. These sections have been doped by diffusion or ion implan-

tation to manufacture the required types of conductivity (p or n). These areas became sources, 

drains and gates in field-effect transistors in the framework of the CMOS operational 

transresistance amplifier. Circuit of the amplifier is presented on the Fig. 1a. After this doping it 
is required annealing of dopant and/or radiation defects. Main aim of the present paper is analysis 

of redistribution of dopant and radiation defects to determine conditions, which correspond to 

decreasing of elements of the considered amplifier and at the same time to increase their density. 
We present a method for decreasing mismatch-induced stress. 

 

 
 

Fig. 1a. Structure of considered amplifier [18] 

 

 
 

Fig. 1b. Heterostructure with a substrate, epitaxial layers and buffer layer (view from side) 
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2. METHOD OF SOLUTION 
 
To solve our aim we determine and analyzed spatio-temporal distribution of concentration of do-

pant in the considered heterostructure. We determine the distribution by solving the second Fick's 

law in the following form [1,19-22] 
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Initial and boundary conditions for the above equation could be written as 
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Here C(x,y,z,t) is the spatio-temporal distribution of concentration of dopant;  is the atomic vo 
 

lume of dopant; s is the symbol of surficial gradient;  
zL

zdtzyxC
0

,,,  is the dopant's concen 

 

tration on heterostructure's interface, which is perpendicular to Z-axis; D and DS are the coeffi-

cients of volumetric and surficial diffusions; functions 1(x,y,z,t) and 2(x,y,z,t) describe the 

chemical potentials: 1(x,y,z,t) corresponds to mismatch-induced stress in the considered hetero-

structure, 2(x,y,z,t) corresponds to porosity of materials of the considered heterostructure. Values 

of dopant diffusions coefficients depends on properties of materials of heterostructure, speed of 

heating and cooling of materials during annealing and spatio-temporal distribution of concentra-
tion of dopant. Dependences of dopant diffusions coefficients on parameters could be approxi-

mated by the following relations [23-25] 
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Here DL (x,y,z,T) and DLS (x,y,z,T) are the spatial (due to accounting all layers of heterostruicture) 

and temperature (due to Arrhenius law) dependences of dopant diffusion coefficients; T is the 

temperature of annealing; P (x,y,z,T) is the limit of solubility of dopant; parameter  depends on 

properties of materials and could be integer in the following interval  [1,3] [23]; V (x,y,z,t) is 

the spatio-temporal distribution of concentration of radiation vacancies; V* is the equilibrium dis-

tribution of vacancies. Concentrational dependence of dopant diffusion coefficient has been de-
scribed in details in [23]. Spatio-temporal distributions of concentration of point radiation defects 

have been determined by solving the following system of equations [19-22,24,25] 
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Initial and boundary conditions for the above equations could be written as 
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Here I (x,y,z,t) is the spatio-temporal distribution of concentration of radiation interstitials; I* is 
the equilibrium distribution of interstitials; DI(x,y,z,T), DV(x,y,z,T), DIS(x,y, z,T), DVS(x,y,z,T) are 

the coefficients of volumetric and surficial diffusions of interstitials and vacancies, respectively; 

terms V2(x,y,z,t) and I2(x,y,z,t) correspond to generation of divacancies and diinterstitials, respec-

tively (see, for example, [25] and appropriate references in this book); kI,V(x,y,z,T), kI,I(x,y,z,T) 
and kV,V(x,y,z,T) are the parameters of recombination of point radiation defects and generation of 

their complexes; k is the Boltzmann constant;   = a3, a is the interatomic distance;   is the spe-

cific surface energy. To take into account porosity of the considered buffer layers we assume, that  

 

the considered porous will be approximately cylindrical with average radius 
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length z1 before annealing [22]. With time small pores decomposing on vacancies. The vacancies 

absorbing by larger pores [26]. During annealing the larger pores will be larger during absorption 
from smaller pores. The transformation of pores leads to more spherical form of pores [26]. Con-

centration of the considered vacancies could be estimated by the following sum (with account all 

pores) 
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where ,  and  describes distances between pores in appropriate directions; parameters l, m and 
n describes quantities in the appropriate directions. 

 

Distributions of concentrations in space and time of diinterstitials I (x,y,z,t) and divacancies V 

(x,y,z,t) could be obtained as solution of the next system of equations [24,25] 
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Initial and boundary conditions for the above equations could be written as 
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
, 

I (x,y,z,0)=fI  (x,y,z), V (x,y,z,0)=fV  (x,y,z). 

 

Here DI(x,y,z,T), DV(x,y,z,T), DIS (x,y,z,T) and DVS(x,y,z,T) are the coefficients of volumetric 

and surficial diffusions of complexes of radiation defects; kI(x,y,z,T) and kV(x,y,z,T) are the pa-
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rameters of decay of complexes of radiation defects. 
 

Chemical potential 1, which were presented in Eqs. (1), (3) and (5), could be obtained by the 

relation, which is presented bellow [19] 

1=E(z)ij [uij(x,y,z,t)+uji(x,y,z,t)]/2.      (7) 

 

In the above relation E(z) describes the Young modulus, value ij describes the tensor of stress;  
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 is the deformation tensor; ui, uj are the components ux(x,y,z,t),  

 

uy(x,y,z,t) and uz(x,y,z,t) of the displacement vector  tzyxu ,,,


; xi, xj are the coordinate x, y, z. 

The Eq. (3) could be written as 
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Here value  describes the coefficient of Poisson; 0 = (as-aEL)/aEL is the mismatch parameter; as, 
aEL are lattice distances of the substrate and the epitaxial layer; K is the modulus of uniform com-

pression;  is the coefficient of thermal expansion; Tr is the equilibrium temperature, which coin-

cide (for our case) with room temperature. Components of displacement vector could be obtained 

by solution of the following equations [20] 
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rostructure, ij Is the Kronecker symbol. Accounting of the relation for ij into the last system of 

equation could be written in the following form 
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Conditions for the system of Eq. (8) could be written in the form 
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All considered equations (equations (1), (3), (5) and (8)) were solved by the method of averaging 

of function corrections [27]. In the framework of the paper we determine concentration of dopant, 
concentrations of radiation defects and components of displacement vector by using the second-

order approximation in the framework of the method of averaging of function corrections. This 

approximation is usually enough good approximation to make qualitative analysis and to obtain 
some quantitative results. All obtained results have been checked by comparison with results of 

numerical simulations. 
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3. DISCUSSION 
 
In this section we analyzed dynamics of redistributions of dopant and radiation defects during 

annealing and under influence of mismatch-induced stress and modification of porosity. Typical 

distributions of concentrations of dopant in heterostructures are presented on Figs. 2 and 3 for 

diffusion and ion types of doping, respectively. These distributions have been calculated for the 
case, when value of dopant diffusion coefficient in doped area is larger, than in nearest areas. The 

figures show, that inhomogeneity of heterostructure gives us possibility to increase compactness 

of concentrations of dopants and at the same time to increase homogeneity of dopant distribution 
in doped part of epitaxial layer. Changing of distribution of concentration of dopant in hetero-

structure in comparison with homogenous sample was obtained due to lower value of dopant dif-

fusion coefficient in substrate in comparison with epitaxial layer. 
 

 
 
Fig. 2. Distributions of concentration of infused dopant in heterostructure from Fig. 1 in direction, which is 

perpendicular to interface between epitaxial layer substrate. Increasing of number of curve corresponds to 

increasing of difference between values of dopant diffusion coefficient in layers of heterostructure under 

condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than value of dopant diffu-

sion coefficient in substrate 
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Fig. 3. Distributions of concentration of implanted dopant in heterostructure from Fig. 1 in direction, which 

is perpendicular to interface between epitaxial layer substrate. Curves 1 and 3 corresponds to annealing 
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time  = 0.0048(Lx
2+Ly

2+Lz
2)/D0. Curves 2 and 4 corresponds to annealing time  = 

0.0057(Lx
2+Ly

2+Lz
2)/D0. 

 

Curves 1 and 2 corresponds to homogenous sample. Curves 3 and 4 corresponds to heterostruc-
ture under condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than 

value of dopant diffusion coefficient in substrate 
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Fig. 4. Spatial distributions of dopant in heterostructure after dopant infusion. Curve 1 is idealized distribu-

tion of dopant. Curves 2-4 are real distributions of dopant for different values of annealing time. Increasing 

of number of curve corresponds to increasing of annealing time 

 
At the same time using the approach of manufacturing of field-effect transistor leads to optimiza-

tion of annealing of dopant and/or radiation defects. Reason of this optimization is following. If 

annealing time is small, the dopant did not achieve any interfaces between materials of hetero-

structure. In this situation no modifications of distribution of dopant's concentration were ob-
tained. If annealing time is large, distribution of concentration of dopant is too homogenous. Now 

let us to optimize the annealing time by using the recently introduces approach [28-36]. In the 

framework of the criterion one shall to approximate real distribution of dopant's concentration by 
the following step-wise function (see Figs. 4 and 5). Next we determine optimal values of anneal-

ing time by minimization of the following mean-squared error 
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Fig. 5. Spatial distributions of dopant in heterostructure after ion implantation. Curve 1 is idealized distri-

bution of dopant. Curves 2-4 are real distributions of dopant for different values of annealing time. Increas-

ing of number of curve corresponds to increasing of annealing time 
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where   (x,y,z) is the step-wise approximation function. Dependences of optimal values of an-

nealing time on parameters are presented on Figs. 6 and 7 for diffusion and ion types of doping, 
respectively. It should be noted, that it is necessary to anneal radiation defects after ion implanta-

tion. One could find spreading of concentration of distribution of dopant during this annealing. In 

the ideal case distribution of dopant achieves appropriate interfaces between materials of hetero-

structure during annealing of radiation defects. If dopant did not achieves any interfaces during 

annealing of radiation defects, it is practicably to additionally anneal the dopant. In this situation 

optimal value of additional annealing time of implanted dopant is smaller, than annealing time of 

infused dopant. Increasing of the optimal values of annealing time were obtain by increasing of 
value of dopant diffusion coefficient with changing of the considered parameters. 
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Fig. 6. Dependences of dimensionless optimal annealing time for doping by diffusion, which have been 

obtained by minimization of mean-squared error, on several parameters. 

 

Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and  =  = 0 for 

equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the de-

pendence of dimensionless optimal annealing time on value of parameter  for a/L=1/2 and  =  = 0. 

Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter  for a/L=1/2 

and  =  = 0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter  

for a/L=1/2 and  =  = 0 
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Fig. 7. Dependences of dimensionless optimal annealing time for doping by ion implantation, which have  

been obtained by minimization of mean-squared error, on several parameters. 
 

Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and  =  
= 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. 

Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter  for 

a/L=1/2 and  =  = 0. Curve 3 is the dependence of dimensionless optimal annealing time on 

value of parameter  for a/L=1/2 and  =  = 0. Curve 4 is the dependence of dimensionless opti-

mal annealing time on value of parameter  for a/L=1/2 and  =  = 0 
 

Next we analyzed influence of relaxation of mismatch-induced stress on distribution of dopant in 

doped areas of heterostructure. Under following condition 0< 0 one can find compression of dis-

tribution of concentration of dopant near interface between materials of heterostructure. Contrary 

(at 0>0) one can find spreading of distribution of concentration of dopant in this area. This 

changing of distribution of concentration of dopant could be at least partially compensated by 

using laser annealing [36]. The considered annealing leads to acceleration dopant diffusion and 
another processes in processed area due to inhomogeneity of temperature distribution and law of 

Arrhenius. Accounting relaxation of mismatch-induced stress in heterostructure could leads to 

changing of optimal values of annealing time. It should be noted, that modification of porosity 
leads to decreasing of value of mismatch-induced stress. On the one hand mismatch-induced 

stress could be used to increase density of elements of integrated circuits. On the other hand 

could leads to generation dislocations of the discrepancy. Figs. 8 and 9 show distributions of va-

cancies concentration in the porous materials and displacement vector's component. The compo-
nent is perpendicular to interface, which is presents between layers of the considered heterostruc-

ture. Increasing of quantity of vacancies leads to decreasing of component uz of displacement 

vector due to decreasing of density of materials of heterostructure. At the same time one can find 



International Journal of Modelling, Simulation and Applications (IJMSA) Vol.4, No.1 

23 

 

decreasing of quantity of vacancies due to presents of mismatch-induced stress. 
 

 
 

Fig. 8. Normalized dependences of component uz of displacement vector on coordinate z for nonporous 

(curve 1) and porous (curve 2) epitaxial layers 
 

 

 
 

Fig. 9. Normalized dependences of vacancy concentrations on coordinate z in unstressed (curve 1) and 

stressed (curve 2) epitaxial layers 
 

 

4. CONCLUSION 
 

In this paper we model redistribution of infused and implanted dopants with account relaxation 

mismatch-induced stress during manufacturing field-effect heterotransistors in the framework of 
the CMOS operational transresistance amplifier based square wave generator. We formulate rec-

ommendations for optimization of annealing to decrease dimensions of transistors and to increase 

their density. We formulate recommendations to decrease mismatch-induced stress. Analytical 
approach to model diffusion and ion types of doping with account concurrent changing of param-

eters in space and time has been introduced. At the same time the approach gives us possibility to 

take into account nonlinearity of considered processes. 

 

5. FUTURE WORK 
 

Results of this paper could be used to optimize manufacturing of integrated circuits to increase 

density of elements of integrated circuits and to decrease their dimensions. 
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