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ABSTRACT 

In this present article, we have proposed a new probability distribution known as Exponentiated  

transmuted Rayleigh distribution and studied some statistical properties of the proposed model. Further, 

for application point of view, we have derived it from Rayleigh distribution as a baseline distribution and 

proved its application in comparison to the its sub-models in terms of fitting a real data as well as 

simulated data through Akaike's Information Criteria (AIC) and Bayesian Information Criteria ( BIC) and 
log likelihood (LL) criterion of goodness of fit. 
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1. INTRODUCTION 

In recent times, various families of distributions have been proposed through expanding general 

families by different techniques. The statistical literature includes number of new families of 

distributions proposed by various researchers, for instance, Gupta and Kundu [6] first developed a 
generalization of the standard exponential distribution, called the exponentiated exponential 

distribution (EED), Elbatal and Muhammed [4] introduced the exponentiated generalized inverse 

Weibull distribution and one more example is the quadratic rank transmutation map (QRTM) 

technique defined by Shaw and Buckley [8]. Ahmad et al. [1] defined the transmuted inverse 
Rayleigh distribution and studied its various properties while Dey et al. [3] considered the 

different estimation methods of transmuted Rayleigh distribution and derived its Statistical 

Properties. Fatima and Ahmad [5] discussed the exponentiated Invert exponential distribution and 
obtained its different structural properties. In addition, for instance see Kareema and Ashraf [7] 

studied the exponentiated transmuted exponential distribution and discussed its important 

properties. More recently, Uzma et al. [9] proposed the transmuted generalized Inverse Rayleigh 

distribution and derived its some characteristic properties. 
 
The density function of Rayleigh distribution (RD) is given by: 

gx  2xe
x2

 ; x  0,  0. 
 

(1.1) 

The corresponding cdf of RD is given by 

Gx  1  e
 x2

 

where is the scale parameter. 

; x  0 ,  0 , (1.2) 
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2. EXPONENTIATED TRANSMUTED RAYLEIGH DISTRIBUTION 

If X follows the transmuted distribution then its cdf is given as: 
 

F 
# 
(x)  (1  )G(x)  G(x)2    

,   1 
 

(2.1) 
 

where G(x) is the cdf of the base distribution. It must be noted that as   0 , the proposed 

distribution reduces to base distribution. 
 

If X follows an Exponentiated distribution then its cdf is given as: 

F (x)  F 
# 
(x)



(2.2) 

 

The cdf of Exponentiated transmuted Rayleigh distribution (ETRD) with parameters ,  and  is 

given by: 

 
F (x)  1  e

x2 1  e
x2 


; x  0 , ,    0. 

 
 

(2.3) 
 

Different possible shapes for the distribution function of ETRD are given in figure 1 respectively. 
 
 

Figure 1: Graphs of the distribution Function. 
 

Differentiating equation (2.2) with respect to x gives the pdf of the Exponentiated model as 

f x  2xe
x2 (1  )  2e

x2  1  e
x2 1  e

x2   1 

; x  0 , ,    0. 

where  ,  and  are scale, shape and transmuted parameters respectively. 

 
 

(2.4) 

 

Figure 2 gives different plots of the ETRD curves for various values of the parameters ,  and 

 . Plots of hazard rate function of ETRD for selected parameter values are shown in Figure 3. 
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Figure 2: Graphs of the ETRD. 

 

3. RELATIONSHIP WITH OTHER DISTRIBUTIONS 

Different important theoretical models can be obtained from the proposed ETRD when its 

parameters are changed. The ETRD has 6 special cases which are given below: 

Different important theoretical models can be obtained from the proposed ETRD as: 
 

 For   1, Equation (2.4) reduces to give the Transmuted Rayleigh distribution (TRD) with 

pdf as: 

f x  2 xe
x2  (1 )  2e

x2   ; x  0,,   0. 

(3.1) 
 

 For   1and   0 , Equation (2.4) reduces to give the one parameter Rayleigh distribution 

(RD) with pdf as: 
 

f x  2xe
x2   

; x  0,  0. (3.2) 
 

 For   0 , Equation (2.4) reduces to give the Exponentiated Rayleigh distribution (ERD) 

with pdf as: 

f x  2xe
x2

 1  e
x2  1 

; x  0 , ,   0. 

 
(3.3) 

 

 For  1, Equation (2.4) reduces to give the Exponentiated transmuted Standard Rayleigh 

distribution (ETSRD) with pdf as: 

f x  2xe
x2 (1  )  2e

x2  1  e
x2 1  e

x2   1 

; x  0 ,    0. 

(3.4) 
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 For   0,  1, Equation (2.4) reduces to give the Exponentiated Standard Rayleigh 

distribution (ESRD) with pdf as: 

f x  2xe
x2

 1  e
x2  1 

; x  0 ,   0. 
 

(3.5) 
 

 For   1,  1 Equation (2.4) reduces to give the Transmuted Standard Rayleigh 

distribution (TSRD) with pdf as: 

f x  2 xe
x2 (1  )  2e

x2  ; x  0 ,   0. 

 

 
 

(3.6) 
 

 For   0,  1and   1, Equation (2.4) reduces to give the Standard Rayleigh distribution 

(SRD) with pdf as: 
 

f x  2xe
x2

 ; x  0. 
 

(3.7) 
 

4. RELIABILITY ANALYSIS 
 

The reliability function of ETRD is defined by: 

R(x)  1  F (x)  1   1  e
x

2 1  e
x

2  



; x  0 , ,    0. 

 

 

(4.1) 
 

The hazard function of ETRD is defined by: 

 
 f (x) 2xe

x 2  (1  )  2e
x 2   1  e

x 2  1  e
x 2    1

 

 h(x)  
R(x) 1  1  e 

x2 1  e x2   


; x , ,    0. (4.2) 

 
 

 
 

Figure 3: Graphs of the Hazard Function. 

 
The reverse hazard rate of ETRD is given as: 
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x2 
 1 

i   1

 1     1 j 



(x) 
 f (x) 


F (x) 

2xe
x2 (1  )  2e

x2  
1  e

x2  1  e
x2  


; x  0 , ,    0. 

 

 
(4.3) 

 

The cumulative hazard function of the ETR model is denoted by H (x) and is given as: 
 

H (x)   ln 1  F (x)   ln 1   1  ex
2   1  ex

2       

5. STATISTICAL PROPERTIES OF THE ETRD 

 Moments of the ETRD 

 

; x  0, ,    0. 

 
(4.4) 

 

In this sub section we study the moment about the mean and the moment about the origin of the 

ETRD. 
 

Theorem 5.1: The rth moment about the mean of ETRD is given as follows: 
 

r 
  r 1 

 
(ik )    m k (m j ) 

(1m)   1  1 r 1 
E( X  )       (1) 2   (1  )      

i0 j0k 0m0  i    j  k  m 






and the moment about the origin is 


(r  k) / 2  1 

.
 

 (r k ) / 2 (i  j  m  1)(r k ) / 21 

 

 
(5.1) 

 

r 
  1 

 
i m (m j ) (1m)    1   11 

E( X )      (1) 2  (1  )    
i0 j0 m0  i    j  m


1  r / 2 

.
 

 r / 2 
(i  j  m  1)

1r / 2
 

 

 
(5.2) 

 

Proof: Using equation (2.4), the rth moment is given by 
 



E( X  )r  ( X  )r f (x)dx 
0 

 

 


( X  )
r 
2xe

x2 (1  )  2e
x2   1  e

x2  1  e
x2    1

dx 
0 

 

 

 

 

 
(5.3) 

Using the series expansion of  1  e x 2    1 

, 1  ex 2    1 

, ( X  )
r  
and  (1 )  2e

x2  


1  e   (1)  e 

i0  i 

1  e      e 

j0 j  

ix2 

x2  jx2 
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r 
r 

k  r  rk k 

( X  )     (1)   x 

(1  )  2e 
k 0     k 

(1  ) 
 

(2) e 
x2 1   1 

m0 m

(1m) m mx2 

 

Expression (5.3) takes the following form: 
 

r 
  r 1 

 
(ik )    m k (m j ) 

(1m)    1   1 r 1 
E( X  )  2     (1) 2    (1  )      

i0 j0 k 0m0 

 
 

xr k 1e(i jm1)x2 

dx. 

0 

i  j  k  m 

      r 1 
(1m) 

   1   1 r 1 
E( X  )

r
    (1)

(ik ) 
2

m  k (m j ) 
(1  )      

i0 j 0 k 0 m0  i  j  k  m


(r  k) / 2  1 

.
 

 (r k ) / 2 (i  j  m  1)(r k ) / 21 

 
Now, if we put   0 .So, the moment about the origin is 

 

r 
  1 

 
i m (m j ) (1m)    1   11 

E( X )      (1) 2  (1  )    
i0 j0 m0  i    j   m





Hence Proved. 
 

Remarks: 

 

 If we put r=1, we get the mean of ETRD as 


1  r / 2 

.
 

 r / 2 
(i  j  m  1)

1r / 2
 

 

 
  1 1 

 
(ik )    m k (m j ) 

(1m)    1   11 1 
E( X  )       (1) 2   (1  )      

i0 j0 k 0m0  i    j  k  m


(3  k) / 2 

.
 

 (1k ) / 2 (i  j  m  1)(3k ) / 2 

 

 If we put r=2, we get the variance of ETRD as 
 

 
      2 1 

(1m) 
   1   1 2 1 

E( X  )
2   
   (1)

(ik ) 
2

m  k (m j ) 
(1  )      

i0 j 0 k 0 m0  i  j  k  m


(2  k) / 2  1 

.
 

 (2k ) / 2 (i  j  m  1)(2k ) / 21 
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 If we put r=3, we get the third moment of ETRD as 
 

3 
  3 1  (ik )    m k (m j ) 

(1m)   1  13 1 
E( X  )       (1) 2   (1  )      

i0 j0k 0m0  i    j  k  m 


(3  k) / 2  1 

.
 

 (3k ) / 2 (i  j  m  1)(3k ) / 21 

 

 If we put r=4, we obtain the fourth moment of ETRD as 
 

4 
  4 1 

 
(ik )    m k (m j ) 

(1m)    1   1 4 1 
E( X  )       (1) 2   (1  )      

i0 j0 k 0m0  i    j  k  m


(4  k) / 2  1 

.
 

 (4k ) / 2 (i  j  m  1)(4k ) / 21 

 

 The Coefficient of Variation is given by 

 

CV 






E( X  ) 
 

 
 

 

 


  1 1 

 

 (ik )    m k (m j ) 
(1m)    1   11 1 

     (1) 2   (1  )      
i0 j0 k 0m0  i   j  k  m


(3  k) / 2 

.
 

 (1k ) / 2 (i  j  m  1)(3k ) / 2 

 

 The Coefficient of skewness is given by 

 
CS 




E( X  )
3
 
3 

E( X  )
2 2 

  3 1  (ik )    m k (m j ) 
(1m)    1   13 1 

     (1) 2   (1  )      
i0 j0 k 0m0  i    j  k  m 


(3  k) / 2  1 

 
 (3k ) / 2 (i  j  m  1)(3k ) / 21 

 

   2 1 
 

(ik )    m k (m j ) 

3 
(1m)    1   1 2 1  2 

      (1) 2   (1  )      
 i0 j0 k 0m0  i    j  k  m 
 

  (2  k) / 2  1  



  (2k ) / 2 (i  j  m  1)(2k ) / 21 
. 



Var(x) 

   
  2 1 

(1) 2    (1  ) 
(1m) 

(ik )    m k (m j ) 

 1 1 2 1    

i0 j0 k 0m0 


(2  k) / 2  1 

.
 

 i 

 j  k  m

   

 (2k ) / 2 (i  j  m  1)(2k ) / 21 
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X 




 The Coefficient of kurtosis is given by 

 
E( X  )

4
 

CK  
E( X  )

2 2 

  4 1  (ik )    m k (m j ) 
(1m)    1   1 4 1 

     (1) 2   (1  )      
i0 j0 k 0m0  i    j  k  m 



CK 


(4  k) / 2  1 

 (4k ) / 2 (i  j  m  1)(4k ) / 21 

2 
. 

   2 1  (ik )    m k (m j ) 
(1m)    1   1 2 1 

      (1) 2   (1  )      
 i0 j0 k 0m0  i    j  k  m 
 

  (2  k) / 2  1  



  (2k ) / 2 (i  j  m  1)(2k ) / 21 





 Moment Generating Function 

 
Theorem 5.2: Let X have an ETRD. Then MGF of X denoted by 

 
 

M X (t) is given by: 
 

 
  1  t r  i m (m j ) (1m)    1   11 

M X  (t)       (1) 2  (1  )    
i0 j0 m0r 0 r !  i    j  m 


1  r / 2 

.
 

 r / 2 
(i  j  m  1)

1r / 2
 

 

 
(5.4) 

 

Proof: -By definition 
 

M   t   Ee tx 


 e
tx 

f xdx. 
0 

 

Using Taylor series expansion, we get 
 

  tx2 




 t r     t r 

M X t   1  tx   f xdx    x
r 
f xdx.  

EX 
r 



0  2! 

 
      1  t r 




i m (m j ) 

r 0 r ! 0 r 0 r ! 

 
(1m)    1   11 

M X t     
r !

(1) 2  (1  )  i  j m 
i0 j 0 m0 r 0    





Hence Proved. 


1  r / 2 

.
 

 r / 2 
(i  j  m  1)

1r / 2
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x 





1 


ln 1 
 


. 


2 



 

X 

 

 

 Characteristic Function 

Theorem 5.3: Let X have an ETRD. Then characteristic function of X denoted by X t is given 

by: 
 

  1  (it )r  
i m (m j ) (1m)    1   11 

X t        (1) 2  (1  )    
i0 j0 m0r 0 r !  i   j  m


1  r / 2 

.
 

 r / 2 
(i  j  m  1)1r / 2 

 

 
(5.5) 

 

Proof: -By definition 
 

   t   Ee i tx 


 e
itx 

f xdx. 
0 . 

 

Using Taylor series expansion, we get 

 


X t   1  itx 
0 


itx2

 

2! 

 

 f xdx. 



it r 
r! 



 x
r f xdx  

(it )
r
 

r ! E(X 
r 
) 

 
      1 

r 0 


0 

(it )r 
r 0 

 
i m (m j ) (1m)    1   11 

X t     (1) 2 r ! (1  )  i  j m 
i0 j 0 m0 r 0    





Hence proved. 

 

 Random Sample Generator 


1  r / 2 

.
 

 r / 2 
(i  j  m  1)1r / 2 

 

By using the method of inversion, we can generate random numbersfrom ETRD. 

Let  Fx  u, where u ~ U0,1

 u   1  e
x 2   1  e

x 2     

. 
 

(5.6) 
 

On solving equation (5.6) for x in terms of u, we get: 

 

 

(5.7) 

(1  )  (1  )2  4u1/ 
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1   

0 

     k kx2 

 

 Harmonic mean of ETR distribution 

 

The harmonic mean (H) is given as: 

 1 
 E

 1  
 

 1 2xe
x2 (1  )  2e

x2  1  e
x2 1  e

x2   1 

dx 
H 

 
X 
  

x 

  0 

 

The above equation takes the following form: 
 

1   1 
 

i m (m j ) (1m)    1   11 
 2    (1) 2  (1  )    

H i0 j0 m0  i  j  m 

 
 

e(i jm1)x2 

dx. 

0 

1   1  i m (m j ) (1m)    1   11  
     (1) 2 



(1  )     1/ 2 
. 

H i0 j0 m0 

 
6. RENYI ENTROPY 

Renyi entropy is defined by 

 i  j  m  (i  j  m  1) 
(5.8) 

 

   1   
    




I R   log f x 


dx
 , (6.1) 

 

where 
  0

 and   1 
.
 

 

If X has ETRD (x;  , , ) , then by putting equation (2.4) in (6.1) we have: 

I     
   1         

     
x  e

x2 (1  )  2e
x2  1  e

x2 1  e
x2   (  1) 

dx



R 
1   

log  2 
(6.2) 

 



Let  ux   f x
 

dx 
0 

  


         2        2     
  2 

 ( 1) 




     2 
 ( 1) 

u x   2 
0 

x e x 
(1  )  2 e x 

1  e
 x

 1   e
 x 

dx 
. 

Using the series expansion of  1  e
x 2    (  1) 

, 1  e
x 2    (  1) 

and  (1   )  2e
x 2   

 x2  (  1)  i  (  1)ix2 

1  e   (1)  e 
i0  i 

 x2  (  1)   (  1)  j  jx2 

1  e  
j0 j 

 e 


(1 )  2e    (1 ) (2) e 10 x2 (  k ) 
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. 

1 

2 

n 

 

Put x
2 
 t, 2xdx  dt, as x  0, t   and x  , t  0 . 

 

  
   

  
(  k )  (  1) (  1)      1 

1
  
     

ux       (1)
i 
2

k
 1 (k 

j ) 
(1  )      x 2

 e ( i j k ) 
t 
dt 

i0 j0 k 0  i  j  k  0 

 
  1 




(  k ) 

 
2 
 
 
   i k  1 (k  j )  (  1) (  1)   

        (1) 2  (1  )    
i0 j0 k 0  i  j 


   1

 k 

 
 



(  1) 

(  i  j  k ) 2
 

(6.3) 
 

Putting the value of equation (6.3) in (6.2) we get the Renyi entropy of ETRD as follows: 
 

   1 




  

(  k ) 
 ( 1) ( 1)  

  2  
  (1)

i 
2 k   1 (k  j ) (1 )    


I   

 1 
log




i0 j 0 k 0  i  j  k 
  1 . (6.4) R 

1  

   




 
    2    




 
(  1) 

 





7. ORDER STATISTICS 

(  i  j  k) 2 




Let X 1 , X 2 , X 3...., X n  be the ordered statistics of the random sample X1 , X 2 ,...X n of size n 

drawn from the ETRD having cdf and pdf  given respectively by (2.3) and (2.4), then the pdf of  
rth order statistics of ETRD is given by: 

 

f r x 
n! 

 
 

r  1!n  r ! 
F xr 1 1  F xnr  

f x
. 

 
for 1  r  n 

 
 

(7.1) 

The pdf of the first order statistic X 1  min X 1 , X 2 ,...X n is given by: 

f  x  2nxex
2  1   1  ex

2  1  e x
2    n1 

(1  )  2ex
2   1  ex

2  1  ex
2    1 

. 
 

(7.2) 

The pdf of the nth order statistic X n   max X 1 , X 2 ,...X n is given by: 

f  x  2nxe
x2 (1 )  2e

x2  1 e
x2 1 e

x2  n 1

. 

 

(7.3) 



. 
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x  

 

i xi1 1  e 

 



 
l 

 



8. MAXIMUM LIKELIHOOD ESTIMATION 

We estimate the parameters of the proposed model using the method of MLE. The likelihood 
function is given by: 

Lx  2 n   
n   

x e
xi

2 (1  )  2e
xi

2   1  e
xi

2  1  e
xi

2   1 


  i 
i1 


 (8.1) 

 

 

 l  log Lx  n log 2  n log   n log   
i 1 

 

 

log( xi  )   
i 1 

n 
2 

i 
i 1 

log (1  )  2e
xi 

2  
(8.2) 

   1) 

 

 


i 1 

log 1  e 
xi 

2     1)
n

 
i 1 

log 1  e
xi 

2  
l 


 n 



n   

log 1  e
xi

2  n   

log 1  e
xi

2  . 

 

l n 

i1 

 
n 

 
 1  2e

xi
2

 

i1  
n 2exi

2
 

(8.3) 

 
 


  (1  )  2e 

 (  1) . 
2 

i1 xi
2

 

 

(8.4) 
l n n n 2x 

2
e
xi

2

 
n x 

2
exi

2
 

n x 
2
exi

2
 

  i1 
i
 

  

i1 (1  )  2e
xi

2 




i1 1  e
xi

2 




i1 1  e
xi

2 


   x 
2 
 

i
  (  1) 

i
  (  1) 

i
 . 

(8.5) 
 

Now, solving the resulting non-linear system of equations 
l

 


 0, 

l
 


 0 and 

l 
 0 




provides the maximum likelihood estimate of the parameters  , and  respectively. Moreover, 

all the second order derivatives exist. Thus we have the3 x 3 inverse dispersion matrixes given by 
 

 ˆ      V̂  V̂ V̂ 
 

ˆ
        


  ~ N     , V  ̂ V̂ V̂       
 ˆ    

 
   




    V̂  V̂ V̂ 

         



V

V 
1  
 E V

V 

V

V 


V  , 

 
 

(8.6) 
V V

V 






where 

 

V

 
2
l 

 2 
,V

 
2
l 

 2 
,V

  
 

2
l 

2
 

 
and V  V

 
2
l 

  
,V


 V

 2 

  
,V  V

 
2
l 

  
.
 

n 

n n 
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V̂ 


The solution of the above inverse dispersion matrix will yield the asymptotic variance and 

covariance of the maximum likelihood estimators  ,̂ ,̂ ̂ . Hence, the approximate 100(1-α) % 

confidence intervals for 
 , ,  are given respectively by 

 

ˆ  Z 
2 

,̂   Z    
2 

, ̂   Z , 
2 

where Z  is the α-th percentiles of the standard normal distribution. 
2 

 
 

9. APPLICATIONS AND SIMULATION STUDY 

Here, we consider both a real life and simulated data sets to compare the flexibility of the ETR 

distribution over the existing sub models. The real data set is a subset of the data reported by 

Bekker et al. [1], which corresponds to the survival times (in years) of a group of patients given 
chemotherapy treatment alone. 

 
The simulated data sets of sizes 25, 50 and 100 have been generated from ETR distribution using 

the inverse CDF method with parameters ( , ,  ) = (0.3, 0.3, and 0.2). The analysis involved in 

this study has been performed with the help of R software and the performances for the different 

sub models are presented in the tables given below: 
 

Table 1: Distribution Performance with respect to simulated data sets 

 

n Distributi 

on 
  

Log- 

likelihoo 

d 

 

AIC 

 

BIC 

  

ETRD 
0.2854354 
(0.21778624 
) 

0.17840550 
(1.17731203 
) 

0.23117927 

( 
0.05330543) 

- 

10.68228 

 

27.36457 

 

31.02119 

  

TRD 
0.7957615 

(0.1957473) 

0.6384628 

( 

0.2226062) 

 

_ 
- 

43.83593 

 

91.67186 

 

94.10961 

 
RD 

0.9656273 
_ _ 

- 
96.05971 97.27858 

 (0.1931253) 47.02985 

25 
 

ETSRD 

 

_ 

-0.5712586 

(0.38564295 
) 

0.25108595 

( 

0.06117106) 

- 

16.28081 

 

36.56161 

 

38.99936 

  

ESRD 

0.2915334 

( 

0.0583060) 

 

_ 

 

_ 
- 

17.10664 

 

36.21328 

 

37.43216 

  

TSRD 

 

_ 

0.5519817 

( 
0.2071306) 

 

_ 
- 

44.31726 

 

90.63453 

 

91.8534 

  

ETRD 

0.32041326 

(0.21058372 
) 

0.61850470 

(0.84261497 
) 

0.24188568 

( 

0.03808559) 

- 

14.05814 

 

34.11628 

 

39.85235 

 
50 

 
TRD 

1.0682605 

(0.1921543) 

0.6880692 

( 
0.1680017) 

 
_ 

- 

76.05998 

 
156.12 

 
159.944 

 
RD 

1.3812709 
_ _ 

- 
165.9229 167.8349 

 (0.1953411) 81.96145 
 ETSRD _ -0.76991238 0.22161842 - 38.20977 42.03381 

V̂ 


V̂ 
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   (0.28172753 
) 

( 

0.04584189) 

17.10488   

 

ESRD 

  0.27926205 

( 

0.03949311) 

- 

19.04657 

 

40.09315 

 

42.00517 

 

TSRD 

 

_ 
0.7190950 

( 
0.1398676) 

 

_ 
- 

76.12579 

 

154.2516 

 

156.1636 

 

 

 
 

 

 

 
10 

0 

 

ETRD 

0.3250869 

(0.15547395 
) 

0.80678763 

(0.53612244 
) 

0.24822879 

( 

0.02822033) 

- 

24.28131 

 

54.56262 

 

62.37813 

 

TRD 
1.2545354 

(0.1644369) 

0.6394561 

( 
0.1269644) 

 

_ 

 

-140.794 

 

285.5879 

 

290.7983 

 

RD 

1.5837690 

(0.1583768) 

 

_ 

 

_ 
- 

151.3273 

 

304.6546 

 

307.2598 

 

ETSRD 

 

_ 

-0.5273861 

(0.23884204 
) 

0.2440504 

( 
0.03136916) 

- 

27.99245 

 

59.98491 

 

65.19525 

 
ESRD 

  0.27931783 

( 
0.02793143) 

- 

29.97287 

 
61.94573 

 
64.5509 

 

TSRD 

 

_ 
0.75695959 
(0.09720453 
) 

 

_ 
- 

142.1505 

 

286.3011 

 

288.9063 

 

Table 2: Distribution Performance with respect to chemotherapy data 

 

Distribution    Log- 

likelihood 
AIC BIC 

 

ETRD 
0.14353065 

(0.0501614) 

0.16638809 

(0.49633472 
) 

0.40243642 

( 
0.07347305) 

 

-58.63927 

 

123.2785 

 

128.6985 

 

TRD 
0.2516189 

(0.0473479) 

0.5225830 
(0.19332706 
) 

 

_ 

 

-74.69783 

 

153.3957 

 

157.009 

RD 
0.30130088 

(0.0449149) 
_ _ -77.91663 157.8333 159.6399 

ETSRD _ 
-0.4871733 
( 0.2713967) 

0.6390210 
( 0.1293740) 

-125.1827 254.3654 257.9787 

ESRD 
0.7856918 
(0.1171238) 

_ _ -126.8645 255.729 257.5357 

 

TSRD 

 

_ 

-0.0990113 

( 
0.1883941) 

 

_ 

 

-128.1472 

 

258.2944 

 

260.101 

 

We noticed from Table 1 and 2 that ETR model gives the highest log-likelihood value or the 

lowest AIC and BIC values as compared to its different sub models. So, we conclude that the 

ETR distribution shows to a better fit than the TRD, RD, ETSRD, ESRD and TSR distribution 
and therefore could be chosen as the best model. 
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10. CONCLUSION 

In this research paper, we proposed a new three-parameter probability model known as 
Exponentiated Transmuted Rayleigh Distribution (ETRD), which is an extension of the Rayleigh 

distribution. By considering both the simulated as well as real life data sets, we proved its 

applicability in comparison to other existing models like one Parameter Rayleigh Distribution, 

Exponentiated Rayleigh Distribution, Exponentiated Transmuted Standard Rayleigh Distribution, 
Transmuted Standard Rayleigh Distribution and Standard Rayleigh distribution. Thus, we 

conclude that our model is better as compared to other models mentioned above. 
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