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ABSTRACT 
 

We consider a new type of anomalous transport in the particular type of continuous time random walk 

(CTRW) in the stochastic process where the particle have interaction with its environment and may behave 

unexpectedly more random or more stable. The process that was utilized in this study uses the integrated 

Brownian motion subordinated by an inverse α-stable subordinator. The proposed new process has 

external field which causes the two most probable points to have another point between them and we 

termed it as anomalous jump. We compute the time-scale for the mean squared displacement of the usual 

continuous time random walk (CTRW) and the anomalous jump. Furthermore, as expected, the time scale 

for the anomalous jump exhibits an interaction with its environment when there is an imposed memory 

kernel function. Lastly, using the time scale obtained for the MSD of the anomalous jump, we have 

generalized the external drift force field on the coupled Langevin equation obtained by Fogedby. 
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1. INTRODUCTION 

 

The concept of the continuous time random walk was first introduced by Montroll-Weisscher [1] 

and has been utilized over the past decades to model diffusions. Continuous time random 

walk(CTRW) can be considered as an evolution of a random walker’s position and within this 

framework, it can be used to model anomalous behavior which can be characterized as anomalous 

diffusions. Over the past years, processes exhibiting anomalous increasingly attracted many 

attentions [2]. Such process can be used to study the particles in complex environments. In fact, 

there are alternative approaches [3] to these kinds of processes and one of which is the Focker-

Plank equation that contains non-local fractional derivatives and the CTRW processes [4][5][6] 

which have been proposed to described the analysis on microscopic properties of anomalous 

diffusion processes. In the continuum limit, the continuous descriptions of CTRWs have been 

considered by Foged by [7] in 1994, which is a set of stochastic differential equations 
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where η(s) is a Gaussian noise with 〈
���〉 = 0, 〈�
���
���〉 = δ(s−τ) and ζ(s) is a white α-stable 

L`evy noise. As can be seen in (1), the random walk x(t) = X(s(t)) is parametrized in terms of 

continuous random variable s, which is subjected to a random change of physical time t. In the 

absence of the external fied F(x) analytical expressions for correlation functions could be 

derivedby the application of the inverse Fourier and Laplace Transforms. If F(x) = −γx, we are 

dealing with the Ornstein-Uhlenbeck process [8]. 

 

The aim of this study is to make a model for CTRW which is associated with an anomalous jump 

and to describe its connection to equation (1) through the distribution of the time-scale of the 

MSD corresponding to the anomalous jumps. 

 

2. MODEL 

 
Figure 1: Schematic representation of the CTRW (Blue) and the anomalous jumps (Red) 

In figure 1, let Ti and Tk be a non-negative series of independent identically distributed (IID) 

random variables denoting the waiting times between the jump on CTRW (Blue line in the 

Figure), and the anomalous jump (Black line in the figure), respectively. We set t(0) = 0 and t(n) 

=∑ ������  +∑ ��������   to denote the total time after nth jump including the anomalous one. Let Li 

and Lk be the series of (IID) jump length of the CTRW (blue) and the anomalous jump (black). If 

we set X(0) = 0 and let X(n) =∑ ������ +∑ �������� to denote the final position of the random walker, 

where ���� 	= 	���� 	 ≥ 	1 ∶ 	�� � 	≤ 	�� is the number of jump up to time t including the 

anomalous jump. In terms of subordinated process we can write position of the random walker as 

 ���� = %&����' = ∑ ��(���
��� + ∑ ��(�����

��� 																																							�2� 
In the continuous limit, we can write the position of the CTRW with anomalous jump as 

�%
�� = * +��,���, +




-
* +��, − 1���,



-
																																													�3� 
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																																																															���� = * ���,���,



-
																																																															�4� 

where equation (2) has an equivalent representation in the form of 

																																																													���� = %��1����																																																																					�5� 
and the parent process X(s) takes the form 

																																												%��� = * 3��,���, +



-
* 3��, − 1���,



-
																																													�6� 

where B is the standard Brownian motion and the inverse subordinator sα(t) is defined by [3] 

�1��� = 5 67	� > 0 ∶ 	���� ≥ �:																																																										�7� 
or 

�1��� = �<=7	� > 0 ∶ 	���� ≤ �:																																																									�8� 
and equation (4) is an α-stable L`evy motion with characteristic form 

〈?�@��
�〉 = ?�@A
,				0	 < 	D			 ≤ 1																																																					�9� 
 

3. RESULTS AND DISCUSSIONS 

In order to calculate the probability distribution of the random walker for both CTRW and 

anomalous jump with physical time t, eliminating the variable s is required (see [7]). With this 

propostion, we define the Probability Density Functions F��, ��	, G��, ��, and	H��, ��. In terms of 

the subordination process, we have 

F��, �� = * G��, ��	H��, ����
I

-
�10� 

For the first moment of the parent process, [5] we have 

〈%���〉 = 〈* 3��,���,



-
〉 + 〈* 3��, − 1���,




-
〉 = 0																																		�11� 

and the second moment is 

〈%J���〉 = 〈* 3��,���, ∙ * 3��,′���,,



-




-
〉 

																+ 〈* 3��,���, ∙ * 3��,′���,,



-




-
〉 

= 2
3 �M − �J																																																																																	�12� 
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For the first moment of the subordinated process, we have 

〈����〉 = * �
NI

�I
F��, ���� = * ��

I

-
* �G��, ��H��, ���� = *〈%���〉H��, ���� = 0

I

-

I

-
				�13� 

⇒ 〈�J���〉 = * �J
NI

�I
F��, ���� 

= * ��
I

-
* �JG��, ��H��, ���� = *〈%J���〉H��, ����

I

-

I

-
 

																																																																	= * 2
3

I

-
�M	H��, ���� − * �J	H��, ����

I

-
																							�14� 

Hence, the MSD for the subordinated process takes the form 

〈�∆��J���〉 = 〈�J���〉 − 〈����〉J = * 2
3

I

-
�M	H��, ���� −* �J	H��, ����

I

-
																�15� 

From the relations shown in equation (7) and (8), we have the equality of the probability 

distribution 

Q��1 ≤ �� = 1 − Q����� ≤ ��																																											�16� 
which then allows us to write the PDF H��, �� in terms ofH∗��, ��	as 

H��, �� = − S
S�*H∗��,, ����

�

-
																																																		�17� 

Taking its Laplace Transform yields 

HT��, <� = − S
S�

1
<HT ∗�<, �� = <1��?�@A
, 0 < 	D ≤ 1																										�18� 

We have the MSD for the subordinated process in Laplace Space 

〈&∆�U'J�<�〉 = * 2
3

I

-
�M<1��?�@A
�� −* �J<1��?�@A
��

I

-
 

																																																											= 4
<J1NJ −	

2
<1NJ 																																																																		�19� 

Finally, we obtained the MSD for the subordinated process in terms of its physical time-scale 
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〈�∆��J���〉 = 4 �J1N�
Γ�2D + 2� − 	2 �1N�

Γ�D + 2�																																															�20�	 

The first term of equation (20) corresponds to the physical time scale of the normal jump [5], 

while the second term corresponds to the physical time scale of the anomalous jump. Hence, the 

total expression of the obtained MSD in Eq. (20) is the MSD time scale for the whole process 

with the inclusion of the anomalous jump to go to the expected normal jump. This would suggest 

that the anomalous jump can be triggered by the external field, and it is possible to be 

characterized. The next step is to change the expression (α +2) → λ, then the 2nd term of the right 

side of the eq. (20) will become 

〈�∆��J���〉 = �W��
Γ�X�																																																																												�21�	 

Now, consider a memory function R(t) which can be represented as Brownian Process and a 

Fractional integrand of the form [10] 

 
Figure 2: Graphical illustration of equation (20) where it also follow a power-law behavior. It shows 

that for small α, deviation is very clear between the processes and this suggests that for larger α, the 

resulting mean squared displacement is restored (e.g if t → ∞, corresponding MSD for the normal 

jump is recovered) 

 

Y�ZW [��� =
1

Γ�X� *�� − �,�W��[��,���′
�

�Z
																																																											�22� 

where to is the starting point for the function R(t) to occur and (21) is the known Reimann-

Louiville fractional integration. In order for (22) to be legitimate, we should consider the 

possibility to change λ →−λ. Let λ be any positive real integer in the interval �� − 1,�) with 

�	 ∈ 	ℵ then R(t) can be considered as a well-behaved function. Introducing a fractional 

derivative of R(t) of order λ 

�̂ZW [��� =
1

Γ�� − X�
�_
��_ *�� − �,�W��[��,���′

�

�Z
																																										�23� 

where we can write (23) in terms of Caputo Fractional time derivative 
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` �̂ZW [��� =
1

Γ�� − X� *�� − �,�_�W��[_��,���′
�

�Z
																																									�24� 

Since the memory function R(t) describes the movement of the anomalous jump, it vanishes at t
-
o. 

Then, it is convenient to define the Gel’fand-Shilvo distribution 

ab��b� = �c��
Γ�d�eb��b�																																																																			�25�		 

where the H(to) is the unit step Heaviside function. Now, suppose (24) is legitimate under its 

m−derivative integral. Then, we can write (23) as 

�̂ZfW [��� = ` �̂ZW [��� + g [�h���bN�ah�WN����
_��

h�-
																																									�26�		 

and the first term of (26) can be written in Laplace Space as 

						� i ` �̂ZW [���j = kW[�k� − g kW�h��[�h���bN�
_��

h�-
																																									�27� 

For X	 = 	1/2,�	 = 	1, notice that(24) takes the form 

` �̂ZW [��� =
1

Γ�1/2� *�� − �,���/J �[��
,�

��′ ��′
�

�Z
																																														�28� 

is the known Basset force for �	 > �b. And for �	 = 	2and X	 = 	1,it takes the form which satisfies 

the friction force due to the plasma fluids. Thus, we can say that the anomalous jump in CTRW 

can be triggered by a fractional force of the form (24). Therefore, the coupled Langevin equation 

(1) can be generalized in terms of a fractional force and maybe written in the for 

��
�� = ���� + 
��� = ` �̂ZW ���� + 
��� 

 

which is now considered by many authors for modeling fractional brownian motion in complex 

environment given by proper conditions and parameter. 

4. CONCLUSION 

 

It is found in this study that considering a random jump between two expected or more probable 

points exhibits another time scale which is less than the normal time scale for anomalous 

transport given in the first term of equation (20). In contrast to other works [2],[4],[5],[7], where 

we considered new behavior, it is found that the corresponding time scale for the anomalous 

transport with external field is given by equation (20) and further details for the time scale 

corresponding to the external field was elaborated upon considering a memory function, thus 

resulting to equation (21) and (23). In addition, the external field was found to be characterized by 

the Caputo fractional derivative with proper parameters. 
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