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ABSTRACT 
 

In this paper, a robust adaptive type-2 fuzzy nonsingular sliding mode controller is designed to stabilize the 

unstable periodic orbits of uncertain perturbed chaotic system with internal parameter uncertainties and 

external disturbances. In Higher Order Sliding Mode Control (HOSMC),the chattering phenomena of the 

control effort is reduced, by using Super Twisting algorithm. Adaptive interval type-2 fuzzy systems are 

proposed to approximate the unknown part of uncertain chaotic system and to generate the Super Twisting 

signals. Based on Lyapunov criterion, adaptation laws are derived and the closed loop system stability is 

guaranteed. An illustrative example is given to demonstrate the effectiveness of the proposed controller. 
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1. INTRODUCTION 
 

Chaotic phenomenon is widely observed in several applications such as: medical field, fractal 

theory, electrical circuits and secure communication [1]. Although, the prominent characteristics 

of chaotic system is its extreme sensitivity to initial conditions and its unpredictability; it is 

usually difficult to predict exactly the behavior of the chaotic system. Recently, several 

researchers have focused on chaos control [2]. Many nonlinear control techniques have been 

successfully applied on chaos control and synchronization of different dynamical systems [3-5], 

nonlinear control [6-7], active control and backstepping design [8-10], fuzzy logic and adaptive 

control [11-12], adaptive fuzzy control [13]. 

 

Unfortunately, in the most of the approaches mentioned above the unknown parameters of the 

chaotic system,the uncertainties,internal and external disturbances, have not been considered, 

which implies that the robustness has not been investigated. Sliding Mode Control (SMC) is often 

adopted, due to its inherent advantages of fast dynamic response, guaranteed stability, robustness 

against matching external disturbances, andinternal parameter variations. Several controllers 

based on sliding mode control have been proposed for chaos schemes [14-16].  

 

However, it should be noted that the smoothness of a control signal in sliding mode is not easily 

achievable without loss performance and robustness degradation. A lot of works have been 

proceeded to solve this problem by using adaptive control [17-18], and intelligent approaches 

[19-20]. 

 

The High Order Sliding Mode Control (HOSMC) has been presented to reduce and (or) remove 

the chattering phenomenon. Moreover, this technique provides higher accuracy than the 

standardSMC [21-23]. Higher order sliding modes (HOSM) generalize the basic so-called first 
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order sliding mode idea acting on the higher order time derivatives of sliding function. In the case 

of second order sliding mode, the sliding set is described asS = {s = s� = 0, s� ≠ 0}, and the 

control is acting on the second derivative of the switching manifold s [24-25]. A HOSMC has a 

finite time convergence, which is satisfied when the switching gains in the HOSM control law are 

selected properly. Nevertheless, the calculation of these gains needs the well knowledge of the 

system dynamic [21,26]. 

 

In this paper, a higher order sliding mode controlcombined with adaptive type-2 fuzzy systems, is 

proposed to design a robust controller for stabilization of unknown SISO nonlinear chaotic 

system, working in the presence of uncertainties and external disturbances. The Super Twisting 

algorithm is implemented to avoid a chattering phenomenon. In the same time, we introduced 

adaptive type-2 fuzzy systems for model the unknown dynamic of system and simplify the 

calculation of gains in the second order sliding mode. Their updates are performed using 

adaptation laws derived from the stability studyin the Lyapunov sense. 

 

The organization of this paper is as follows. In section 2, the problem states and description of the 

system.The adaptive type-2 fuzzy second order sliding mode control scheme is presented in 

section III. Simulation example demonstrate the efficiently of the proposed approach in section 

IV. Finally, section V gives the conclusions of the advocated design methodology. 

 

2. DESCRIPTION OF SYSTEM AND PROBLEM FORMULATION 
 

Consider n-order uncertain chaotic system which has an affine form: ��� 
 = �
+1,								1 ≤ 
 ≤ � − 1,��� = �(�, �) + Δ�(�, �) + �(�) + �(�) , �      (1) 

 

where � = [�1(�)		�2(�) 	… ��(�)] ∈ ℜ�
 is the measurable state vector, �(�, �)is unknown 

nonlinear continuous and bounded function, �(�) ∈ ℜis control input of the system, Δ�(�, �)and �(�)are the uncertainties and external bounded disturbances, respectively, 

 "�(�, �)" < $					,					"Δ�(�, �)" ≤ Δ�			,				|�(�)| ≤ Δ�     (2) 

where$	,			Δ& and Δ� are positive constants. 

 

The control objective is getting the system to track an n- dimensional desired vector '�(�)which 

belong to a class of continuous functions on[�(, ∞]. Let’s the tracking error as; 

 *(�) = �(�) − '�(�)										= [�(�) − '�(�)			��(�) − '� �(�) 		…		�(�−1)(�) − '�(�−1)(�)	]										= [*(�)			*�(�)	. . . *(�−1)(�)]     (3) 

 

Therefore, the dynamic errors of system can be obtained as; 

,-
.*�1 = *2*�2 = *3,⋮*�� = �(�, �) − '�(�)(�) + Δ�(�, �) + �(�) + �(�)

�     (4) 

 

The control goal considered is that; lim4→67*8(�)7 = lim4→6 9�8(�) − '8:(�)9 → 0,      (5) 
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2.1. Second Order Sliding Mode Control 
 

The basic concept of second order sliding mode control can be interpreted from the following the 

following second order nonlinear system: 
 ���1 = �2	,��2 = �(�, �) + ;(�, �) + �(�), � 			       (6) 

 ;(�, �)isthe whole uncertainties indicating the sum of the external disturbances and parameter 

uncertainties, where;(�, �) ≤ Δ and Δ = Δ& + Δ:. 

 

The linear sliding manifold is defined as, <(*, �) = = >>4 + ?@(A8B) *        (7) 

 
whereλ > 0 is a positiveconstant, The time derivative of < is: 

 <�(*, �) = *(�) + E< 
whereE< = ∑ (�−1)!H!(�−H−1)!�H=1 = ∂∂�@(�−H−1) ?H*�. 
 

By using system (6) we obtain; 

 <�(*, �) = EJ + '�: − �(�, �) − �(�) − ;(�, �)      (8) 

 
If �(�, �) is known and free of external disturbancesanduncertainties, and when the system (6) is 

restricted to the(*8, �) = 0, it will be governed by an equivalent control �*Kobtained by: 

 �*K = − L�(�−, �) − '� � − δ<N        (9) 

 

The global control is composed of the equivalent control and the Super Twisting terms �Band �Osuch that; 
 

P��B = −?B<
Q�(<(*, �))�O = −?O"<(�, �)"(B/O)<
Q�(<(*, �))�       (10) 

 

where ?BS��?O, are the Super Twisting control gains [21], by adding these term to (9), we obtain 

the global control: 

 � = − L�(�8, �) − '�: − δJ − T ��BU( − �ON                   (11) 

 

The sufficient condition to ensure the transition trajectory of the tracking error from approaching 

phase to the sliding one is: 12 ��� <2(*−, �) = <(*−, �)<�(*−, �) ≤ −η W<(*−, �)W      (12) 

 

whereη > 0is a constant. 

 

After some manipulations, we obtain: 



International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.4, October 2015 

4 

−?B� − ?O"<(*, �)"(B/O) +;(�, �)	<
Q�X<(*, �)Y ≤ −Z     (13) 
 

Then we can choose the parameters of ?1 and ?2as follows: 
 ?1� + ?2"<(*, �)"(1/2) ≥ Z + ";(�, �)"																																										≥ Z + Δ        (14) 

 

Note that the control law (11) depends only on the parameters?	, ?B	, ?O, and nonlinear 

continuous function�(�, �)	. However, the knowledge of the ;′< upper bound and�(�, �)	 is 

required in the optimal choice of?1and ?2, in the approaching phase. Therefore �(�, �)	 is 

unknown and(�, �) ≠ 0.  
 

In the rest of paper we solved these problems by introducing an adaptive fuzzy second order 

sliding mode controller. 
 

2.2. Interval Type-2 Fuzzy Logic System 
 

Fuzzy Logic Systems (FLSs) are known as the universal approximators and have several 

applications in control designandidentification. A type-1 fuzzy system consists of four major 

parts: fuzzifier, rule base, inference engine, and defuzzifier. A T2FLS is very similar to a T1FLS 

[27], the major structure difference being that the defuzzifier block of a T1FLS is replaced by the 

output processing block in a T2FLS, which consists of type-reduction followed by 

defuzzification. 

Figure 1. Structure of a type-2 fuzzy logic system. 
 

In a T2FS, a Gaussian function with a known standard deviation is chosen, while the mean (m) 

varies between m1and m2. Therefore, a uniform weighting is assumed to represent a footprint of 

uncertainty as shaded in Figure. 2.  
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Figure 2. Interval type-2 Gaussian fuzzy set. 

 

It is clear that the type-2 fuzzy set is in a region bounded by an upper MF and a lower MF 

denoted as ]̂_̀(�) and ]_̀(�) respectively, and is named a foot of uncertainty (FOU). Assume that 

there are M rules in a type-2 fuzzy rule base, each of which has the following form:  

 a
:				c$�1
<$d1
 , S��… , S����
<$d�
 	, efgh'
<[ij
ik
 ] 
 

wherexj, j=1,2,…,n and y are the input and output variables of the type-2 fuzzy system, 

respectively, the $d�
  is the type-2 fuzzy sets of antecedent part, and [ij
ik
 ] is the weighting 

interval set in the consequent part. The operation of type-reduction is to give a type-1 set from a 

type-2 set. In the meantime, the firing strength F
i for the ith rule can be an interval type-2 set 

expressed as; 

 $
 ≡ [�
, �
]          (15) 

 

where 

m�
 = ]$̀1
 (�1) ∗ … ∗ ]$̀�
 (��)�
 = ]$̀1
 (�1) ∗ … ∗ ]$̀�
 (��)
�        (16) 

 

In this paper, the center of set type-reduction method is used to simplify the notation. Therefore, 

the output can be expressed as; 

 'cos(�) = q'j, 'kr																	= Ti1∈qij1,ik1r…Tis∈qijs,iksr 		× T�1∈L�1,�̂1N…T�s∈L�s,�̂sN 1	 ∑ �
i
s
=1∑ �
s
=1u   (17) 

 

where 'cos(�) is also an interval type-1 set determined by left and right most points ('j and 'k ), 
which can be derived from consequent centroid set [ik
 ,ij
] (either i
 vki


)  and the firing 

strength �
 ∈ $
 = L�
, �̂
N. The interval set  [ik
 ,ij
] (i=1,… ,M)should be computed or set first 

before the computation of 'cos(�). For any value ' ∈ 'wxy. Hence, left-most point 'j and right-

most point 'k can be expressed as [27]; 
 'j = ∑ �j
ij
s
=1∑ �j
s
=1 					and				'k = ∑ �k
ik
s
=1∑ �k
s
=1        (18) 

 

( )A xµ %

( )
A

xµ
%

σ
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Using the center of set type-reduction method to compute 'jand'k. Hence,'j and'kin (18) can be 

re-expressed as; 

 'k 				 = 'k(�1, … , �a, �a+1, … , �s, ik1, … , iks)
									= =∑ �
ik
a
=1 + ∑ �
ik
s
=a+1 @ =∑ �
a
=1 + ∑ �
s
=a+1 @u     (19) 

 'j 				 = 'j(�1, … , �}, �}+1, … , �s, ij1, … , ijs)							= =∑ �
ij
}
=1 + ∑ �
ij
s
=}+1 @ =∑ �
}
=1 + ∑ �
s
=}+1 @u     (20) 

 

The defuzzified crisp output from an IT2FLS is the average of 'jand'k, that is: 
 '(�) = ~��~�O           (21) 

 

3. ADAPTIVE INTERVAL TYPE-2 FUZZY SECOND ORDER SLIDING MODE 

CONTROL 

 
In this section, the unknown function �(�8, �)and switching signals of the super twisting terms �		1and �		2 will be replaced by adaptive type-2 fuzzy systems., then we replace �(�8, �)and the 

Super Twisting terms by ��(�, ��), ),(ˆ
11 θsu  and ),(ˆ

22 θsu respectively such that: 

 ��(�, ��) = ��e��(�)         (22) 

 ��1(<, �1) = �		1e �	1(<)�         (23) 

 ��2(<, �2) = "<(*, �)"(1/2)�		2e �	2(<)       (24) 

 

where��	, �1S���2 are adjustable parameters vectors. 

 

To guarantee the global stability of closed loop system (6) with the convergence of tracking errors 

to zero, we propose the following control law: 

 � = −q��(�, �&) − EJ − '�: − ��B(<, �B) − ��O(<, �O)r     (25) 

 

In order to derive the adaptive laws of adjusting ��	, �1S���2 , first, we define the optimal 

parameter vector�∗�		, �∗1 and �∗2 as; 

 �&∗ = argmin��∈�� � sup�∈��"��(�, �&) − �((�, �)"� , �B∗ = argmin��∈�� �supy∈��"��B(<, �B) − �B"� 
and �O∗ = argmin��∈�� �supy∈��"��O(<, �O) − �O"�. 
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where��, �1, �2, ��and �< are constraint sets of suitable bounds on ��, �1, �2, � and s, 

respectively, they are defined as; 

 �� = ���: W��W ≤ s�� 	 , �1 = ��1: W�1W ≤ s1� 	 , �2 = ��2: W�2W ≤ s2�, �� = {�: |�| ≤ s�}	,					�< = {<: |<| ≤ s<}; 
 

Wheres�, s1, s2, s�and s< are positive constants.  

 

The minimum approximation error is defined as; 

 i = q�(�, t) − ��(�, �&∗)r 
We can write, |i| ≤ "�(�, t) − ��(�, �&∗)"							≤ "�(�, t)" − ��&∗U�7�&(�)7 ≤ $ −s& 

 

By using $ −s& = �, it can be easily concluded that i is bounded i ≤ �, 

 

Then the optimal parameters of �(�, t),	�	1		and		�	2 are defined as: 

 ��(�, ��∗) = ��∗e��(�)         (26) 

 ��∗1(<, �		1∗ ) = �		1∗ e�	1(<)�        (27) 

 ��∗2(<, �		2∗ ) = "<(*, �)"(1/2)�		2∗ e�	2(<)       (28) 

 

From the study of the closed loop stability, we can find the adaptation laws of adjustable 

parameters, then, we consider the following Lyapunov function: 

 � = BO <O + BO�� �d& U�d& + BO�� �d	B U�d	B + BO�� �d	O U�d	O      (29) 

 

where�d
 = �
 − �
∗		, (
 = 1,2) and �d� = �� − ��∗ . ��	, �1and�2 are positive training 

constants,  the time derivative of (29) is : 

 �� = <�(*, �)<(*, �) + 1�� �d� e�� � + 1�1 �d 	1 e�� 	1 + 1�2 �d 	2 e�� 	2     (30) 

 

By using the control law (25), the equation (22-24), the time derivative of the sliding surface (8) 

becomes: 

 <� = � X�, �Y + ;(�, �) − ��(�, �&∗) + ��B(<) + ��O(<)			= � X�, �Y − ��X�, �& Y + ��X�, �&∗Y − ��X�, �&∗Y + ;X�, �Y + ��B(<) + ��B∗(<) − ��B∗(<) + ��O(<) + ��O∗(<) − ��O∗(<)			= i − (�& − �&∗)U�&(�) + (�		B − �		B∗ )U�	B(<)� + ��B∗(<) + ��O∗(<) 	+ (�		O − �		O∗ )U"<(*, �)"(B/O)�	O(<) + ;(�, �)  

(31) 
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The substitution of (31) in (30) gives: 

 �� = B�� �d& (��& − �&<(*, �)�&(�)) + <(*, �)(i + ��B∗(<) + ��O∗(<) + ;(�, �))
										+ B�� �d	B (��	B + �B<(*, �)�	B(<)�) 	+ B�� �d	O (��	O + �O<(*, �)"<(*, �)"(B/O)�	O(<)) (32) 

 

By choosing the following adaptation laws: �� � = ��<(*, �)��(�)         (33) 

 �� 	1 = −�1<(*, �)�	1(<)�                     (34) 

 �� 	2 = −�2<(*, �)"<(*, �)"(1/2)�	2(<)       (35) 

 

where�d� 
 = �� 
 		, (
 = 1,2) and �d� � = �� � . Therefore, we obtain: �� = <(i + ;(�, �) − ?1∗�<
Q�(<) − ?2∗|<|(1/2)<
Q�(<))                 (36) 

 �� = i< + ;(�, �)	< − (?1∗� + ?2∗|<|(1/2))|<|					≤ −Z|<| + |i||<| ≤ −Z + �       (37) 

 

According to Barbalat’s lemma [28], we can state that the sliding surface is constructed to be 

attractive and lim�→∞*(�) = 0. Therefore, the control objective is achieved, and hence, we can 

synthesize the robust controller based on second order sliding mode and fuzzy type-2 systems, in 

which we can force the output system � to follow a bounded reference trajectory '�. 

 

The overall scheme of the adaptive type-2 fuzzy second order sliding mode control for nonlinear 

chaotic system in presence of uncertainties, external disturbance and the training data is corrupted 

with internal noiseis shown in Figure. 3. 

 

 
Figure 3. Overall adaptive type-2 fuzzy second order sliding mode control scheme in presence of noise. 
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4. SIMULATION EXAMPLE 
 
The above described control scheme is now used to stabilize the nonlinear chaotic system which 

is defined as follows; 

 ���1 = �2,						��2 = −0.4�2 − 1.1�1 − �13 − 2.1cos(1.8�) �      (38) 

 

With initial states(0) = [0.1		0]U. 

 

For free input, the simulation results of system are shown in Figure 4-5. 

 

 
 

Figure 4. Time response of states (x1, x2) 

 

 
 

Figure 5. Typical chaotic behavior of duffingoscillator 

 
The control objective is to force the states system ��(�), 
 = 1,2  to track the reference trajectories ':(�)  and '�:(�)  in finite time, such as ':(�) = (π/3)(sin(�) + 0.3sin(3�)) , the adaptive 

interval type-2 fuzzy second order sliding mode control (25) is added into the system as follows: 

 

P��B = �O,						��O = −0.4�O − 1.1�B − �B¢ − 2.1cos(1.8�) + Δ�(�8, �) + �(�) + �(�)�   (39) 
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The sliding surface is selected as: < = *� + ?*; where ? = 10, and the adaptive parameters �B = 10, �O = 6 and �& = 15. To designthe equivalent part of control signal, the input variables 

of the fuzzy system ��(�8, θ8&)are chosen as ��(�), 
 = 1,2, and we define seven type-2 Gaussian 

membership functions selected as $�¦, j = 1, . . . ,7which are shown in table. 1, with variance σ = 0.5 and initial values θ&(0) = ΟO×ª. 

 

Similarly to generate the two adaptive fuzzy systems which allow us to approximate the reaching 

part of control signal (�	1and �	2), we consider three type-2 fuzzy interval sets according to the 

variable <(�) (Figure. 6).  
 

 

Table 1. Interval Type-2 Fuzzy Membership Functions For ��(
 = 1,2). 
 

 
Mean  

 
Mean 

m1 m2 m1 m2 μ¬­�(��) -3.5 -2.5 μ¬­®(��) 0.5 1.5 μ¬­�(��) -2.5 -1.5 μ¬­̄ (��) 1.5 2.5 μ¬­°(��) -1.5 -0.5 μ¬­±(��) 2.5 3.5 μ¬­²(��) -0.5 0.5    

 

 
 

Figure6. Interval type-2 antecedent membership functions of s(t) 
 

The simulation results are presented in the presence of 

uncertaintiesΔ�(�8, �) = (π/6)sin(2π�B(�))sin(3π�O(�)), external disturbance�(�) = sin(2�), 
and white Gaussian noise is applied to the measured signal �
(�), 
 = 1,2and swith Signal to 

Noise Ratios (SNR=20dB), with initial states �(0) = [1		0]U 
 

The tracking performance of states �−(�)is shown in Figures7-8. The tracking errors and control 

input �(�)are shown in Figures 9-10, the phase-plane trajectories of system are represented 

infigures 11-12, and the sliding manifold with its time derivative in figure 13. 
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Figure 8. Time response of state x2 and desired trajectory³� ´ 

 

 
 

Figure 9. Tracking errors e1(t) and e2(t) 

 
 

 
 
 

Figure 10. Control input u(t) 

 

 
 

Figure 11.System state space of duffing oscillator 

0 2 4 6 8 10 12 14 16 18 20

-2

-1

0

1

2

time(s)

v
e
lo

c
it
y
 t

ra
c
k
in

g

 

 
x
2

y'
d

0 2 4 6 8 10 12 14 16 18 20
-3

-2

-1

0

1

time(s)

tr
a
c
k
in

g
 e

rr
o
rs

 

 

 e
1

 e
2

0 2 4 6 8 10 12 14 16 18 20

-10

0

10

time(s)

C
o
n
tr

o
l 
in

p
u
t

 

 

u

-1.5 -1 -0.5 0 0.5 1 1.5
-3

-2

-1

0

1

2

3

x
1

x
2

 

 

x
1
,x

2

y
d
,y'

d



International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.4, October 2015 

12 

 
 

Figure 12.Phase-plane trajectory of tracking errors(e1,e2) 
 

 
 

Figure 13. Trajectories of sliding manifold s and its derivative <� 
 

According to the above simulation results, it is obvious that the tracking errors converge to zero 

in a finite time, which implies that the proposed controller forces the system states to reach 

quickly their references. Obviously, the phase trajectory of (e1, e2) converges directly to the phase 

origin. In the same time, the implementation of Super Twisting algorithm in higher order sliding 

mode control allows obtaining a smooth control signal (Figure10). 

 

5. CONCLUSION 
 
In this paper, the problem of stabilization orbit of uncertain chaotic system working in the 

presence of uncertainties, external and internal disturbances is solved by incorporation of adaptive 

interval type-2 control scheme and second order sliding mode approach using super-twisting 

algorithm. The adaptive interval type-2 fuzzy systemsare introduced to approximate the unknown 

part of system and Super Twisting gains. Based on the Laypunov stability criterion, the 

adaptation law of adjustable parameters of the type-2 fuzzy system and the stability of closed loop 

system are ensured. A simulation example has been presented to illustrate the robustnessand the 

effectiveness of the proposed approach. 
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