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ABSTRACT 
 
In this paper we consider an approach to optimize manufacturing elements of emitter-coupled logic. The 

optimization leads to decreasing dimensions of these elements. Framework this paper we consider manu-

facturing these elements of emitter-coupled logic framework a heterostructure with required configuration. 

After grown the heterostructure the required areas have been doped by diffusion or ion implantation. It is 

attracted an interest optimization of annealing of dopant and/or radiation defects to decrease dimensions 

of the considered elements. We consider an approach to make the optimization. The modeling part based 

on modified method of functional corrections, which gives us possibility to analyzed manufacturing the 

elements of emitter-coupled logic without crosslinking of solutions on interfaces between layers of hetero-

structure. 
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1. INTRODUCTION 
 

Intensive development of electronic technique leads to increasing of performance of elements of 

integrated circuits ant to increasing of degree of their integration (p-n-junctions, bipolar and field-

effect transistors, thyristors, ...) [1-6]. Increasing of the performance could be obtain by develop-

ment of new and optimization of existing technological processes. Another way to increase the 

performance in determination of materials with higher speed of transport of charge carriers [7-

10]. At the same time with increasing of degree of integration rate of elements of integrated cir-

cuits dimensions of their elements decreased. To decrease the dimensions it could be used differ-

ent approaches. Two of them (laser and microwave types of annealing) based on generation of 

inhomogenous distribution of temperature [11-13]. The inhomogeneity gives us possibility to de-

crease dimensions of elements of integrated circuits due to Arrhenius law. Another way to de-

crease the dimensions is doping of epitaxial layers of heterostructures by diffusion and ion im-

plantation [14-17]. However this type of doping leads to necessity to optimize annealing of do-

pant and/or radiation defects [17-24]. Distributions of concentrations of dopants in heterostruc-

tures and homogeneous samples could be changed not only by heating and cooling, but radiation 

processing too [25]. 

 

In this paper as a development of works [17-24] we consider an approach to manufacture more 

compact elements of emitter-coupled logic. To illustrate the approach we consider a heterostruc-

ture, which is illustrated on Fig. 1. The heterostructure consist of a substrate and three epitaxial 

layers. Some sections have been manufactured in the epitaxial layers such as it shown on the fig-
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ure. After finishing of the nearest to the substrate epitaxial layer we consider doping of the sec-

tions of the layer by diffusion or ion implantation. The sections will have role of collectors during 

functioning of the manufacturing device. Farther dopant and/or radiation defects should be an-

nealed. After finishing this annealing we consider two another epitaxial layers with appropriate 

sections (see Fig. 1). All sections of the last layers have been also doped by diffusion or ion im-

plantation. In our situation it is attracted an interest microwave annealing of dopant and/or radia-

tion defects. Frequency of electro-magnetic radiation should be so, that thickness of scin-layer 

should be larger, than thickness of external epitaxial layer and smaller, than sum of thicknesses of 

external and average epitaxial layers. Sections of the average and external epitaxial layers will 

have roles of bases and emitter, respectively, during functioning of the considered device. In the 

present paper we analyzed of dynamics of redistribution of infused and implanted dopants and/or 

radiation defects during annealing. 

 

 
 

Fig. 1. Heterostructure with four layers, which consist of a substrate and three epitaxial layer with sections, 

manufactured by using another materials 

 

2. METHOD OF SOLUTION 
 

We determine spatio-temporal distribution of concentration of dopant to solve our aims. We de-

termine the required distribution by solving the second Fick's law [1,14-17] 
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with initial and boundary conditions 
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The function C (x,y,z,t) described the spatio-temporal distribution of concentration of dopant in 

the Eq.(1) and appropriate boundary and initial conditions; argument of the considered function 

described current coordinates and current time; T is the temperature of annealing; DС is the do-

pant diffusion coefficient. Value of dopant diffusion coefficient is different in different materials 
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and varying with heating and cooling of the heterostructure (with account Arrhenius law). Dopant 

diffusion coefficient as a function of parameters could be approximated by the following relation 

[26-28] 
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Function DL(x,y,z,T) in the Eq.(3) describes spatial and temperature dependences of dopant diffu-

sion coefficient. Spatial dependence of dopant diffusion coefficient is occur due to presents sev-

eral layers with different properties framework heterostructure. Temperature dependence of do-

pant diffusion coefficient is occur due to Arrhenius law. Function P (x,y,z,T) describes depend-

ence limit of solubility of dopant on spatial coordinates and temperature. Parameter  has differ-

ent values in different materials and could be integer in the following interval   [1,3] [26]. Func-

tion V (x,y,z,t) describes the spatio-temporal distribution of radiation vacancies; V* is the equilib-

rium distribution of vacancies. We used concentrational dependence of dopant diffusion coeffi-

cient from [26]. It should be noted, that diffusion type of doping did not leads to generation of 

radiation defects. In this situation 1= 2= 0. Spatio-temporal distributions of concentrations of 

point radiation defects (interstitials and vacancies) have been determined by solution of the fol-

lowing system of equations [27,28] 
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Boundary and initial conditions for the equations are 
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               I (x,y,z,0)=fI (x,y,z), V (x,y,z,0)=fV (x,y,z).                                 (4) 

 

Here  =I,V; spatio-temporal distribution of concentration of radiation interstitials has been de-

scribed by the following function I (x,y,z,t); diffusion coefficients of interstitials and vacancies are 
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D(x,y,z,T); square terms V2(x,y,z,t) and I2(x,y,z,t) give a possibility to take into account genera-

tion diinterstitials and divacancies; functions k,(x,y,z,T) and kI,V(x,y,z,T) describe spatio-

temperature distribution of parameters of generation complexes of point radiation defects and 

recombination. Spatio-temporal distributions of concentrations of simplest complexes (divacan-

cies V(x,y,z,t) and diinterstitials I(x,y,z,t)) of radiation defects have been described as solution 

of the following system of equations [27,28] 
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Initial and boundary conditions for the equations are 
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Here D(x,y,z,T) are the diffusion coefficients of complexes of radiation defects; kI(x,y,z,T) and 

kV(x,y,z,T) are the parameters of decay of complexes of radiation defects. 

 

Spatio-temporal distribution of temperature has been determine as solution of the second law of 

Fourier [29] 
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Initial and boundary conditions for the equation are 
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, T (x,y,z,0)=fT (x,y,z).        (9) 

 
The function T(x,y,z,t) describes the spatio-temporal distribution of temperature of annealing; c 

(T)= cass[1- exp(-T(x,y,z,t)/Td)] is the heat capacitance (in the most interest case, when current 
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temperature is approximately equal or larger, than Debye temperature Td, we have possibility to 

consider the following limiting case c (T)cass) [29];  is the heat conduction coefficient, which 

depends on properties of materials and temperature (dependence on temperature of the heat con-

duction coefficient could be approximated by the function (x,y,z,T)=ass(x,y,z)[1+ 

(Td/T(x,y,z,t))] in the most interesting interval of temperature [29]); p(x,y,z,t) is the volumetric 

density of power of heating;  (x,y,z,T)=(x, y,z,T)/c (T) is the thermal diffusivity. 

 

With account temperature dependence of parameters spatio-temporal distribution of temperature 

should be calculated first-ever. To make the calculation we used recently considered approach 

[17,20,30]. Framework the approach we transform approximation of thermal diffusivity to the 

following form: ass(x,y,z)=ass(x,y,z)/cass=0ass[1+T gT(x,y,z)]. Farther we determine solution of 

the Eq.(8) as the following power series [17,20,30] 
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System of equations for determination Tij(x,y,z,t) (i0, j0) have been obtained by substitution the 

series into Eq.(8). Boundary and initial conditions have been obtained by the same procedure. 

The procedure is standard and will not be present in this paper. Solutions of the equations for the 

functions Tij(x,y,z,t) (i0, j0) have been calculated by standard Fourier approache [31, 32] 

framework the second-order approximation on parameters  and . The second-order approxima-

tion is usually enough good approximation to make qualitative analysis and to obtain some quan-

titative results (see, for example, [17,20,30]). Analytical results leads to more demonstrable anal-

ysis of described process. The obtained analytical results have been checked by comparison with 

numerical one. 
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We solved the Eqs.(11) with conditions (12) by using the approach, considered in [17,20,30]. 

Framework the approach we determine solutions of the equations as the following power series 
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Equations for the functions   ,,,
~

ijk
 (i 0, j 0, k 0) could be obtained by substitution of the 

series (13) into Eqs.(11). Initial and boundary conditions could be obtained by substitution of the 

series (13) into conditions (12). Equations for the functions   ,,,
~

ijk
 with appropriate initial 

and boundary conditions have been solved by standard Fourier approach [31,32]. 

 

Now we shall solve system of equations (6) to calculate spatio-temporal distributions of concen-

trations of complexes of radiation defects. To determine these distributions we transform approx-

imations of diffusion coefficients to the following form: D(x,y,z,T)=D0[1+g(x,y,z, T)], 

where D0 are the average values of the coefficients. In this situation the Eqs. (6) have been 

transform to the following form 
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We determine solutions of the equations as the power series 
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Equations for the functions i(x,y,z,t) (i 0), initial and boundary conditions could be obtain by 

substitution of the series (14) into Eqs.(6) and conditions (7). The equation have been solved by 

standard Fourier approach [31,32]. 

 

To calculate spatio-temporal distribution of concentration of dopant we used recently introduced 

approach [17,20]. Framework the approach we transform approximation of dopant diffusion coef-

ficient in the following form: DL(x,y,z,T)=D0L[1+LgL(x,y,z,T)]. Here D0L is the average value of 

dopant diffusion coefficient. Function gL(x,y,z,T) and parameter L have the following limitation 

|gL(x,y,z,T)|1, 0L< 1. Farther we determine solution of Eq.(1) as the following power series 

                      






0 1

,,,,,,
i j

ij

ji

L
tzyxCtzyxC  .                             (15) 

Equations for functions Cij(x,y,z,t) (i 0, j 0), initial and boundary conditions could be obtained 

by substitution of the series in the Eq.(1) and condition (2). The equations have been solved by 

standard Fourier approach [31,32]. 

 

We analyzed spatiotemporal distributions of temperature, concentration of dopant and concentra-

tions radiation defects by using the second-order approximations with account all considered pa-

rameters. Recently we obtain, that the second-order approximations are usually enough good to 

obtain some quantitative results and make qualitative analysis [17,20,30]. Obtained analytical 

approaches give a possibility to analyze physical processes more demonstrably in comparison 

with numerical one. We check analytical results by comparison with numerical one. 

 

3. Discussion 
 
Let us analyzed dynamic of redistribution of dopant and radiation defects in the considered heter-

ostructure during their annealing. We analyzed the dynamic by using calculated in the previous 

section relations. Several distributions of concentrations of dopant in the considered in Fig. 1 het-

erostructures are presented on Figs. 2 and 3. The Fig. 2 shows distributions of concentrations of 

dopant for diffusion type of doping. The Fig. 3 shows distributions of concentrations of dopant 

for ion type of doping. The figures show distributions for lager value of dopant diffusion coeffi-

cient in doped area in comparison with nearest one. One can find from these figures, that sharp-

ness of p-n-junctions could be increased by using inhomogeneity of heterostructure. One can find 

the same situation in doped sections of epitaxial layer. Increasing of sharpness of p-n-junctions 

leads to decreasing their switching time. It should be also noted, that increasing of homogeneity 

of distribution of dopant in doped area leads to decreasing local overheat of doped material dur-

ing functioning of p-n-junction. Another way of using the increasing of homogeneity is decreas-

ing of dimensions of the p-n-junction for fixed maximal value of local overheat. On the other 

hand inhomogeneity of doping of base of transistor leads to generation an electric field in the 

base. One can find acceleration of transport of charge carriers by he electric field. The accelera-

tion gives us possibility to increase performance of the transistor. 
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Fig.2. Distributions of concentration of dopant in the considered heterostructure for diffusion type of dop-

ing. The distributions have been calculated for direction, which is perpendicular to interface between epi-

taxial layer substrate. Increasing of number of curve corresponds to increasing of difference between values 

of dopant diffusion coefficient in layers of heterostructure 
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Fig.3. Distributions of concentration of dopant in the considered heterostructure for ion type of doping. The 

distributions have been calculated for direction, which is perpendicular to interface between epitaxial layer 

substrate. Curves 1 and 3 corresponds to annealing time  = 0.0048(Lx
2+ Ly

2+Lz
2)/D0. Curves 2 and 4 corre-

sponds to annealing time  = 0.0057(Lx
2+Ly

2+Lz
2)/D0. Curves 1 and 2 corresponds to homogenous sample. 

Curves 3 and 4 corresponds to heterostructure 

 
 

It is attracted an interest to use microwave annealing to improve properties of drift transistors. 

This type of annealing leads to generation inhomogenous distribution of temperature. The inho-

mogeneity leads to increase homogeneity of distribution of concentration of dopant due to Arrhe-

nius law [33]. It is known, that one should to choose frequency of electro-magnetic irradiation so, 

that thickness of scin-layer should be larger, than thickness of external epitaxial layer, and small-

er, than sum of thicknesses of external and average epitaxial layers. 
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Fig.4. Dependences of dimensionless optimal annealing time of dopant for diffusion type of doping. Pa-

rameters of these curves are following: curve 1 is the dependence of dimensionless optimal annealing time 

on the relation a/L and  =  = 0 for equal to each other values of dopant diffusion coefficient in all parts of 

heterostructure; curve 2 is the dependence of dimensionless optimal annealing time on value of parameter  

for a/L=1/2 and   =   = 0; curve 3 is the dependence of dimensionless optimal annealing time on value of 

parameter  for a/L=1/2 and   =    = 0; curve 4 is the dependence of dimensionless optimal annealing time on 

value of parameter  for a/L=1/2 and  =  = 0 
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Fig.5. Dependences of dimensionless optimal annealing time of dopant for ion type of doping. Parameters 

of these curves are following: curve 1 is the dependence of dimensionless optimal annealing time on the 

relation a/L and  =  = 0 for equal to each other values of dopant diffusion coefficient in all parts of hetero-

structure; curve 2 is the dependence of dimensionless optimal annealing time on value of parameter  for 

a/L=1/2 and   =   = 0; curve 3 is the dependence of dimensionless optimal annealing time on value of pa-

rameter  for a/L=1/2 and   =    = 0; curve 4 is the dependence of dimensionless optimal annealing time on 

value of parameter  for a/L=1/2 and  =  = 0 

 
 

It is known, that increasing of annealing time give a possibility to increase homogeneity of distri-

bution of concentration of dopant. In this situation the distribution became too large. If annealing 

time is too small, dopant has not time to achieve nearest interface between materials of hetero-

structure. In this situation distribution of concentration of dopant has not any changing. In this 

situation it is attracted an interest optimization of annealing. We consider the optimization of an-

nealing framework recently introduced criterion [17-24,33]. To use the criterion we shall approx-
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imate real distributions of concentrations of dopants by step-wise function  (x,y,z). Farther we 

minimize the following mean-squared error to optimize annealing time 

 

                 
x y zL L L

zyx

xdydzdzyxzyxC
LLL

U

0 0 0

,,,,,
1

 .                        (16) 

We illustrate dependences of optimal values of annealing time by  Figs. 4 and 5. Optimal values 

of annealing time of implanted dopant is smaller, than optimal values of annealing time of infused 

dopant. The difference existing due to necessity of annealing of radiation defects. During anneal-

ing radiation defects one can find spreading of distribution of concentration of dopant. In the ideal 

case during annealing of radiation defects should achieves interface between materials of hetero-

structure. If dopant has no time to achieve the interface, additional annealing of dopant attracted 

an interest. The Fig. 5 shows exactly dependences of time of additional annealing.  

 

4. CONCLUSIONS 
 

In this paper we consider an approach to manufacture more compact elements of emitter- coupled 

logic. Framework the approach one shall manufacture a heterostructure with required configura-

tion. After that required parts of heterostructures should be doped by diffusion or ion implanta-

tion. The doping should done with optimized annealing of dopant and/or radiation defects. 
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