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ABSTRACT 

 
In this paper, a comprehensive comparison of two robust estimation techniques namely, compensated 

closed-loop Kalman filtering and open-loop Kalman filtering is presented. A common problem of data loss 

in a real-time control system is investigated through these two schemes. The open-loop scheme, dealing 

with the data-loss, suffers from several shortcomings. These shortcomings are overcome using 

compensated scheme, where an accommodating observation signal is obtained through linear prediction 

technique -- a closed-loop setting and is adopted at a posteriori update step. The calculation and 

employment of accommodating observation signal causes computational complexity. For simulation 

purpose, a linear time invariant spacecraft model is however, obtained from the nonlinear spacecraft 

attitude dynamics through linearization at nonzero equilibrium points -- achieved off-line through 

Levenberg-Marguardt iterative scheme. Attempt has been made to analyze the selected example from most 

of the perspectives in order to display the performance of the two techniques.  
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1. INTRODUCTION 

 
State estimation in uncertain environments [15, 9] or noisy information [29] is a broad field of 

communication and control theory. This is because the problem of state or parameter estimation is 

of paramount importance in the analysis and design of control systems [14]. The most celebrated 

techniques for state estimation are Kalman filtering and its adaptive forms, particle filtering, and 

H∞ filtering [8] etc. For a linear system, Kalman filter is an optimal approach where state of an 

LTI system is estimated based on an optimal Kalman filter gain.  

 

For various reasons including understanding of system behaviour, designing and implementation 

of an optimal control scheme, state (attitude) estimation has remained an important research topic 

for spacecraft control. Spacecraft systems in particular, mainly depend on data achieved and 

processed from the ground that ultimately results in time delay [25]. However, perfect 

communication is a valuable and the most desired asset in the event of fault and failure. To 

handle such unfavourable conditions, several techniques like hardware redundancy, including 

duplicate, triplicate and voting schemes, has remained consistently adopted [24]. But issues like 

weight, complexity and cost of the supplementary elements in these hardware-based techniques 

have diverted the attention toward software based approaches (Model Based FDI) to overwhelm 

the aforementioned limitations [31]. 
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A precise communication is a fundamental factor in achieving fruitful results in any 

control system. However, scenarios including finite gateways of networks, bounded 

spaces and overpopulated networks might cause the data packets to be lost. As a 

consequence, the spacecraft performance may be significantly degraded specially in 

terms of delay and failure due to any of these diverse conditions [26]. Hence the loss of 

observation or output data plays a vital role in spacecraft attitude control and remedies 

need to be explored in order to provide reliable state (attitude etc.) estimation. 
 

Open-loop Kalman filtering (OLKF), also known as Open-loop estimation is, perhaps, the 

predominant scheme in the literature since it is frequently utilized for data-loss cases. There are 

numerous research articles which elaborate this technique in details such as [28, 4, 30, 8] and the 

references therein, to name a few. Some of these literatures have demonstrated the associated 

limitations of this technique too. It is an intense need to propose some novel techniques that could 

handle data-loss situations more efficiently and to overcome those limitations. For such reasons, a 

compensated closed-loop Kalman filtering algorithm is proposed in [17, 18]. In the compensated 

closed-loop scheme, an accommodating observation signal is reconstructed using linear 

prediction coding, for which one parameter is crucial to decides i.e. the order of linear prediction 

filter.  

 

The present study is aimed to elaborate two objectives: (a) to provide handsome details of this 

recently proposed scheme and (b) the extensive study and comparison of these two state 

estimation schemes (Open-loop Kalman filtering and compensated closed-loop Kalman filtering) 

for a rigid body spacecraft system which is subjected to an induced data-loss. A minimum mean 

square error based algorithm is proposed to decide the computation of linear prediction filter 

order. In order to provide the true and complete picture, these two schemes are compared with 

conventional estimation scheme (normal Kalman filtering without any data-loss). In fact it 

provides a common base for the comparison. Both rotational dynamic and kinematic equations 

are used to derive the state-space equations for the spacecraft system [1, 20], contrary to the 

normal trend of using `Kinematic equation' as discussed by [10, 22, 26, 6, 13] and the references 

therein. 

 

The remaining paper is organized as follows: Section 2 presents the nonlinear model of a rigid 

body spacecraft system using Modified Rodrigues Parameterizations i.e. MRP representation. 

Section 3 is devoted to a brief discussion of an existing control system design. A detailed 

discussion of the accommodating closed-loop Kalman filtering scheme is described in Section 4. 

The performance of open-loop estimation and the recently introduced accommodating estimation 

schemes is analyzed through a numerical case study in Section 5. The paper is concluded with 

suggestions for the future work in Section 6. 

 

2. SPACECRAFT RIGID BODY 

 
It is common to observe spacecraft analysis while employing kinematic equations and/or dynamic 

equations in Euler angles and quaternion parameterizations. These two parameterizations have 

certain limitations; nonlinear trigonometric functions and singularity issues are linked with Euler 

angles while a redundant element and unit constraint are associated with quaternion 

parameterizations. To overcome these shortcomings, Modified Rodrigues Parameters (MRPs) are 

utilized in this work which is found advancement to the parameterization's family. 
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2.1 Spacecraft Dynamics 

 
As mentioned before spacecraft dynamics are usually specified by its  'Kinematic'  system only 

[10, 22, 6, 13] In this manuscript, however, both Euler equations of rotational dynamics  and the  

Kinematic equations in order to examine the complete behaviour of the spacecraft system. 

 

2.1.1 Kinematic Equations 

 
In the compact form, Kinematic equations are 

 

                                                )(σσ T=&                                                             (1) 

 

where  σ   is the Modified Rodrigues Parameter and )(σT  is defined as 
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wherein )(σS  denotes the skew symmetric matrix defined as 
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The gyroscope output model is )(ty j  is selected as 

 

  }3,2,1{                )()( =∀+= jtntcy jjjj θ&                                               (5) 

 

where jjj nandc   ,θ  represent the scale coefficient, the angular position and gyroscope noise 

respectively. The noise is assumed to be Gaussian white noise with zero mean, i.e. 

 

            )(0, ~ ΠΝn j                                                                                               (6) 

 

where Π  is the bias variance. 

 

2.1.2 Dynamic Equations 

 
The dynamics are defined using Euler's equations as 
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         τωωω +−= JSJ )(&                                                                            (7) 

 

where J  is the spacecraft’s inertia, τ is control input and “ ωωω ×=)(S ” is the skew 

symmetric matrix which shows the cross-product operation as  
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Equations (1) and (7), collectively constitute the full state vector for the spacecraft plant model, 

i.e. [ ]T
x ωσ  = . The linearized attitude dynamics of the plant are represented as  

    

  )()()()( tGtButAxtx ξ++=&                                                                      (9) 

 

where G and , BA are Jacobian matrices of the linear spacecraft dynamics which are derived in a 

straightforward manner. Equations (1) and (2) can be considered six coupled equations, from 

which the linearized plant model can be achieved through Jacobian linearizations. Some related 

theory can be found in [11]. 

 

3. CONTROL SYSTEM DESIGN 

 
It is important to mention that in this paper special attention is paid to obtain efficient state 

estimation in case of loss of observation and not the control issues related to the spacecraft 

system. Hence, an already established and employed control scheme [1] is briefly recalled for the 

sake of complete view. This control technique consists of two loops. An inner loop comprises a 

simple transfer function while an outer loop is merely a unity feedback gain. The recalled control 

system design is: 
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The positive definite matrices ),( NSP  are the tuning elements need to be tuned. The 

candidate Lyapunov function is  
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with d

*  SandH  are defined as  
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The derivative of Lyapunov function w.r.t time is  
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Figure 1. Schematic of Feedback Controller  

 

The choice of gain parameters )  ,( idipi andss α  to stabilize the plant model could be any suitable 

positive values as long as convergence is associated. Such detailed discussion can be found in [1]. 

In the following section, the two robust algorithms are discussed along with the normal Kalman 

filtering (without any data-loss) scheme. 

 

4. ROBUST KALMAN FILTERING TECHNIQUES 

 
Loss of observations or data-loss might produce adverse scenarios for state estimation in Kalman 

filtering, as it heavily depends on measured data [7] and [3]. Such conditions are sometimes 

unavoidable, result in poor estimation and could lead Kalman filter to diverge very swiftly. A 

usual technique to avoid such shortcomings is the so-called Open-Loop Estimation (OLE) 

algorithm when observations are subjected to random loss -- see e.g. [27, 23, 33, 28]. In these 

references, the authors have presented the Kalman filter running in an open-loop method, when 

the plant is subjected to data-loss. Simply the predicted quantities (state and covariance) are 

processed without any measurement update to the next step. It is considered helpful to present a 

brief discussion of this OLE along with its related drawbacks. 
 

4.1 Open-Loop Estimation 

 
Open-Loop Estimation (OLE) or Open-Loop Kalman Filtering (OLKF) scheme is an effective, 

simpler and computationally efficient method in practice to accommodate data-loss [12]. In this 

scheme Kalman filter gain Kk is forced to zero if, a data-loss is observed at instant ‘k’ and hence 
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no update step is performed. Therefore, estimation is performed with zero sensitivity matrix [12]. 

Open-loop estimation is briefly introduced in the following lines with necessary comments. 

 

4.1.1 Time update step 

 
The a priori step or time update quantities (state and covariance) are 

 

               kkkkko BuAxx +=+ ||1                                              (15)                      

           k

T

kkkko QAAPP +=+ ||1                                                     (16) 

                                                                                                                           

4.1.2 Accommodating measurement vector 

 
The pseudo-observational vector in Open-loop estimation is  

 

                                                        kkoko xCz |11 ++ =  

 
where the leading subscript ‘o’ shows Open-loop Kalman filtering approach. It causes zero 

residual vector (2-norm) and hence, the Kalman gain would be 

 

                        01 =+ko K                                                               (17) 

 

4.1.3 Measurement update step 

 
Since no data is available for measurement update, hence the a posteriori state and covariance 

quantities will be   

             kkkko xx |1o1|1   +++ ←                                                      (18) 

 

        kkkko PP |1o1|1   +++ ←                                                                   (19) 

 
Therefore, in this approach the a posteriori parameters strictly follow the a priori quantities 

respectively. 

 

4.2 Shortcomings of the OLE 

 
Although Open-loop scheme is a fast remedy to accommodate data-loss in state estimation due to 

skipping of measurement update step, it suffers from the following shortcomings: 

 

1. OLE diverges swiftly in the presence of adequate data-loss [33], 

2. Spikes and/or oscillations (particularly when the output data is recovered), 

3. It is harder to attain steady state values completely when data-loss is resumed [19]. 
 

4.3 Closed-loop Estimation Scheme 
 

Due to the aforementioned disadvantages of OLE approach, an improved estimation scheme, 

based on linear prediction concept, presented in [18, 19], is utilized. This scheme is known as 

"Compensated Closed-loop Kalman Filtering (CCLKF)" wherein the lost observation signal is 

reconstructed through linear prediction subsystem. There are various methods to predict a lost 
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sample or signal such as Particle Swarm Optimization [2], Maximum-a-posteriori or MAP [34], 

Linear Prediction Coefficients/Coding (LPC) [5], etc. For several advantages such as close 

resemblance to FFT, based on source-filter model, easy calculations, LPC technique is adopted to 

reconstruct missing data signal. 

 

For efficient linear prediction, as commonly adopted, it is speculated that the measurement signal 

has correlation of some extend. In addition, the statistical properties of the plant model vary 

slowly with time. According to this scheme, the missing signal is assumed to be 

          ∑
=

−=
p

i

ikik zz
1

α                                                                   (20) 

where the Linear Prediction Coefficients (LPCs) '' iα  represent weights assigned to the previous 

observations which is decided according to their correlation-degrees and '' p  is the order of the 

linear prediction filter (LPFO). The optimal value(s) of LPC and order of the Linear Prediction 

Filter (LPFO) in Equation (20) are important elements in achieving an efficient filter [18] in term 

of optimal results. For this reason, special attention has been considered to compute these two 

critical elements. For this reason, a simple strategy is adopted using Algorithms 1, which can 

assure the optimal value of LPFO leading to the optimal values of LPCs. 

 

Algorithm 1: For LPFO  

1: Initialization j = 1, Compute γγ randR   {Equations (24-26)}. 

2: Recursion j =2, 3, . . . M ( LPFO) 

  Calculate LPC {Equation (27)} 

• Calculate compensated observation signal JRkz
γ

| {Equation (28)} 

• Calculate compensated state estimation j

kc x̂ based on this signal {Equation (29)} 

• Calculate compensated state estimation error 2||ˆ|| : j

kckj xxe −=  

3: Trace ϵth },...,{  ),min( 32 Mjj eeeewherease ∈= ,  

4: Select  jz  which results in ϵth 

5: Decide jp ←  i.e. LPFO. 

 

 
The detailed implementation of compensating scheme which will help in the understanding of the 

above algorithm can be described as follows. Consider the discrete LTI plant dynamics are 

described by the following equations: 
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where ,,,,,,....},2,1,0{ mn nnt RRRRR ×∈∈∈∈=∈ Azuxk ξ  

nmln RR ×× ∈∈ C andB are state transition matrix, the input matrix, and output matrix with 

)).,,(),0,0,((~),,(( 000 kkkk RQPxNvx ξ The random variable kγ is characterized as 

follows: 
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Assume data-loss is observed at time instant ''k , the employed Kalman filtering technique 

(CCLKF) is outlined as follows:  

 • Prediction cycle 

              At time step )(k-1 , 
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where 
kk Q=]E[ T

kξξ  is the process error covariance matrix, with ''E denoting expectation. 

• Check loss of observation: 

 

If 1=kγ   i.e. no loss has occurred. ⇒ Run conventional or normal Kalman filter (see e.g. [7], [3], [32]). 

if 0=kγ , it means a data-loss condition has been detected ⇒ No measurement (data) is available, hence at a posteriori step, accommodating-

measurement 

update procedure is carried out as follows: 

 

• Chose a nominal frame size of the previously stored measurement data (say         

M ) modelled through the constraint ks tfM *≤  [17], where sf  is the 

sampling frequency and tk is starting instant of data-loss. • Compute the autocorrelation matrix γR as 
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         and the auxiliary autocorrelation array γr  is 
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 • Compute the Linear Prediction Coefficients (LPC) as 
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j  .][ 1−==                                        (27) • Compute the accommodating observation vector  as 
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  • Return   to step 1 (prediction cycle). 

Three covariance matrices that appear in above Equation are defined as: 
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                                                                                                                         (30) 

        

where 1|1 −= kkkc PP  is the normal predicted error covariance matrix. The compensated closed-

loop scheme along with the controller strategy is shown in the block diagram fashion in Fig 

(2). The switching mechanism between conventional Kalman filter (when there is no data-loss) 

and compensated closed-loop scheme (when there is a data-loss) is shown in Fig (3). 

 
 

Figure 2. Complete Diagram of Compensated scheme and spacecraft system 
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Figure 3. Switching mechanism between loss of information and fault free systems 

 

5. NUMERICAL SIMULATION 

 
As mentioned before, a rigid spacecraft model, subjected to intermittent output data is 

employed here to test the performance of two schemes. These two schemes are thoroughly 

discussed in the simulation results with their respective advantages and disadvantages. 

Emphasis has been made on simulation results based on a data-loss at a specific location (30 

- 45 sec). However, to show the flexibility and efficiency of the compensated scheme, a few 

simulation results based on a data-loss at another location (15 - 25 sec) are also shown. 

 

5.1 Spacecraft model 

 
 The non-zero equilibrium points in Equations (1) and (7) are computed off-line through 

Levenberg- Marguardt iterative least-square scheme in Matlab-Simulink environment. The 

plant model is lin- earized using Jacobian linearization at these operating points to conclude the 

state-space model. The mathematical description of the linearized spacecraft attitude model is 

given by 
                            

                                                     
tttt

tttt

DuCxz

GBuAxx

θ

ξ

++=

++=&
    (31) 

 

where zux ,,, ξ  are state vectors, deterministic system input, plant disturbance and measured 

output. The linear time invariant system matrices DandCBA   ,, computed through Jacobian 

linearization at non-zero operating points are as follows: 
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For simulation purpose, the initial state vector is selected as  
T

x ]2.0  4.0  3.0  2.0  2.0  2.0[0 −−= ,the operating points computed through Levenberg-

Marguardt methods are ;]9365.0  5767.0  1284.0[ T
u ==τ   0.0447  1741.0[=σ  

T]0.4097- and
T]0.228  0.4779  4779.0[ −=ω . The output and process noise covariance 

matrices are chosen as 
6633 *01.0  and  *05.0 ×× == IQIR  where I  is an identity matrix. 

 

5.2 Spacecraft model 

 
Certain typical simulation results are shown in this section for the system discussed above, 

subjected to an induced data-loss. The simulation results obtained for CCLKF are compared 

with that of OLKF and loss-free (Normal) Kalman filter results. This data-loss is assumed to 

commence at time instant t = 30 sec and remains for 15 sec. Various studies are investigated 

and addressed in the subsection below. 

 

5.2.1 MRP Attitude 

 
Figures 4 and 5 show the estimation results of MRP-σ1 for the said two techniques. Although 

all the three attitude parameters σ1, σ2 and σ3 could be shown, however to avoid repetitions, 

they are not included in this paper. It is obvious that the open-loop estimation diverges heavily 

and instantly. Contrary to this, in the accommodating CCLKF approach, the estimation during 

data-loss time is significantly stable as the highlighted picture shows in Figure 5. No doubt, the 

deviation is directly related to the duration of loss of observation. From Figure 5, it can be 
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observed that less deviation caused by CCLKF scheme results in minor moment of inertia 

(juggling) just after the data-loss is resumed, and hence the steady state is captured sooner than 

OLKF approach. This is a significant achievement compared to OLKF scheme. 
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Figure 4: Estimated result of First MRP (σ1) 
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Figure 5: Data-loss period is highlighted 

 

5.2.2 Angular Velocity 

 
Similar to MRPs, three angular velocities related to the spacecraft model are also analyzed. 

Figures 6 – 8 show the comparison of the two schemes (OLKF and CCLKF) during the data-loss 

time for the angular velocities ω1, ω2 and ω3 along with the base comparison of normal 

Kalman filtering. These figures illustrate, that the unavailability of observation has made 

OLKF a poor estimating tool for nominal data-loss. Abrupt changes ("spikes and oscillations") 

can be frequently realized in the estimation of angular velocities through OLKF scheme. On the 

other side, the accommodating CCLKF scheme provides smaller chattering compared to OLKF 

and hence outperforms. 
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Figure 6: Estimated result of (ω1) 
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Figure 7: Estimated result of (ω2) 

 



International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.1, No.2, July 2014 

 
 

14 

 

0 10 20 30 40 50 60 70 80 90 100

0.5

0.75

1

1.25

Time (Sec)

ra
d

/s
e

c

 

 

Normal KF

Open-Loop KF

Comp. Closed-Loop KF

 
 

Figure 8: Estimated result of (ω3) 

 

5.2.3 Control Effort 

 
MRPs another important aspect which delivers significant performance impact is the control 

input signal. The data-loss at output terminal transverses its influence to the input parameters as 

well due the recursive behaviour of Kalman filter and feedback control system. During the 

data-loss time, significant overshoots can always be observed using the OLKF scheme than the 

accommodating CCLKF scheme as shown in Figures 9-11. To observe the effectiveness and 

flexibility of compensated scheme, Figure 13 shows the performance of OLKF and CCLKF 

when data-loss has occurred at another location (i.e. from 15 – 25 sec). This figure too shows 

the efficiency of CCLKF over the OLKF scheme.  
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Figure 9: Input Signal 1τ  
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Figure 10: Input Signal 2τ  
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Figure 11: Input Signal 
3τ  
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Figure 12:  Simulation results of Control inputs (a) 1τ  (b) 2τ  (c) 3τ  and (d) Enlarge view of 3τ  when 

data loss occurs from 15-25 sec.  
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5.2.4 Error Analysis 

 
Error analysis is the another investigated characteristic which reveals the efficient performance of 

the accommodating CCLKF scheme i.e.    )(ˆ)()( ∀−= iiie krk σσ .  }3,2,1{=i .  Similar to the 

other parameters, less disruption can be seen utilizing CCLKF scheme than that of OLKF 

approach as shown in Figures 13-15. In other words, state estimation using CCLKF approach is 

less influenced by data-loss than the OLKF scheme. 
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Figure 13: Estimated error in σ1 by the three schemes  
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Figure 14: Estimated error in σ2 by the three schemes 
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Figure 15: Estimated error in σ3 by the three schemes  

 

6. CONCLUSIONS AND FUTURE WORKS 

 
6.1 Conclusion 

 
 In this work, theoretical study of two accommodating estimation schemes are discussed for 

a lin- earized rigid body spacecraft model subjected to loss of observations. Linearized output 

dynamics of the spacecraft model are derived by examining the two Direction Cosine 

Matrices of the same sequences for the Euler angels and MRP. The conventional Kalman filter 

fails to provide bounded er- ror estimation during loss of measurement, open-loop Kalman 

filtering (OLKF) is frequently utilized to overcome loss of output data. However, the 

compensated closed-loop Kalman filtering (CCLKF) scheme has been found impressive 

compared to OLKF scheme to the linearized spacecraft model. Simulation results of the two 

approaches are compared to normal Kalman filter estimation approach under no loss of output 

data. A comprehensive analysis of OLKF and CCLKF approaches is presented by demonstrating 

various characteristics through a numerical example. 

 

6.2 Future Work 

 
“In this paper a stationary process of spacecraft dynamics has been considered. However, non-

stationary processes are intended to be tested in future. Stability and convergence issues related 

to accommodating CCLKF approach also need to be explored. In this paper, usual linear 

prediction technique (Normal Equation) is employed to compute linear prediction coefficients. 

In future, faster techniques including Levinson-Durbin and Leroux-Gueguen algorithms, to 

handle computational burdensome of the CCLKF approaches are intended to entertain for the 

discussed case study.” 
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