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ABSTRACT 
 
Synergetic Control and synchronization of two different chaotic systems is presented in this paper and 

simulation results are given illustrating the effectiveness of the robust control technique applied. Similar to 

the sliding mode approach but without damaging chattering, synergetic control is a robust approach which 

doesn’t require linearization and should be suitable for real-time implementation for not requiring a 

discontinuous term in its control law. 
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1. INTRODUCTION 
 

Chaotic phenomena studied for decades and seem to have been discovered by E.N. Lorentz of the 

department of meteorology at MIT in 1963 when he published a system of differential equations 

describing a simplified atmosphere model exhibiting non-periodic steady-state behavior that 

expresses the essence of turbulence [1]. Butterfly or vague attractors issued from the Lorentz and 

the Lorentz like systems, obtained from differential system equations (1) seem to be a well-

known signature of chaotic phase portraits as shown in figures Fig.1a, b and c. Chaotic behavior 

has been reported in many real systems such as power systems, power convertors, biological or 

mechanical systems. Their specifics besides instability, a high sensitivity to operating points as 

well as fractals like phase portrait and bifurcations have attracted many researchers to address the 

challenging issues of chaos control and synchronization of chaotic systems. Among many seminal 

works one can cite Abed and Varaiya [2], Dobson et al [3]. Harb and Abdel-Jabbar [4] analyzed 

the stability of voltage collapse and Hopf bifurcation and chaos in electrical power systems. Harb 

et al [5] analyzed the stability and the bifurcation behavior of a modular peak current-mode 

controlled DC–DC boost converter in power electronics. Anbukumar et al dealt with sliding mode 

control of chaos in voltage mode buck converter [6], Harb [7] and Endo [8] analyzed the chaos 

control of phase-looked loop in communication systems. More recently synchronization of 

chaotic systems has gained an accrued interest in various domains such as cryptography, secure 

communication, pattern recognition and nonlinear control systems. Lin et al (9) applied. type-2 

fuzzy sliding mode control to synchronize chaotic systems, Liu et al [10] used a PI type 

synergetic control for the same purpose reducing chattering as well as response time. 

Synchronization of different fractional systems via active control is studied in [12] and 

synchronization of fractional order Genesio-Tesi system via active control and sliding mode 

control is reported in [13]. The phenomenon of system chaotic behavior has been perfectly 

depicted by classes of mathematical oscillators which reveal the oscillating nature of physical 

systems under specific initial conditions such as the classical Lorentz, Lù, Chua, Genesio-Tesi, 

Vander Pol–Duffing and Chen’s chaotic systems. Illustrating chaotic behavior, Lorentz system 

(1) is simulated producing fractals like phase portraits. 
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x = (25a +10)( y − x) 
 

y = (28 − 35a ) x − xz + (29 a −1) y 
(1) 

z = xy − (8 + a ) z / 3 
 

pour a=0.1;x(0)=-21;y(0)=-9;z(0)=12 
 

                                                                         
 

Figure1 a, b, and c  Lorentz chaotic system phase portraits. 
 
The rest of the paper introduces the problem formulation followed by a brief overview of 

synergetic control. An introduction of the considered chaotic systems ensues followed by 

simulation and simulation results discussion. A conclusion entailing results finding and 

perspective work terminates the paper. 

 

2. SYSTEME DESCRIPTION AND PROBLEM FORMULATION 

 

2.1. Chaotic systems 
 
Chaotic behavior is an unacceptable operating mode which appears for some parameter values 

and not for others. Non periodic chaotic behavior is surprisingly deterministic thus independent 

of any external stimulus [1] in chaotic systems. Controlling such systems is a challenging task 

which has been tackled trough many robust approaches among which sliding mode and 

synergetic control. The latter will be used to control two chaotic systems without a 
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discontinuous control law leading eventually to an ease in implementation. 

 

  

2.2. Synchronization of chaotic systems 
 
The synchronization of two chaotic systems with different initial conditions has been addressed 

via various approaches. Synergetic control is used in this paper to force a slave chaotic system 

output to follow the output of a master chaotic systems .Let the master chaotic system be 

described by (2) and the slave system by (3): 
 
 x  = x  1 ≤ i ≤ n −1  

 

 i i+1       

  

= f ( x, t); 
 

x ; x ∈ R
n
 

 
 

x  

(2)
 

 n    0  
 

  y  = y  1 ≤ i ≤ n −1  
 

  i i+1   

(3)
 

      
x ; x ∈ R

n
 

 

y = g( y, t) + d (t ) + u;  
 

 n     0  
 

 
where f(x,t) and g(y,t) represent chaotic systems dynamics and d(t) is a bounded disturbance; 

u(t) is the synchronizing control while xi and yi designate systems state and outputs. 

Synchronization consists in elaborating a control law such that both chaotic system outputs are 

identical despite the difference in nature and initial conditions. Letting the synchronization 

errors between master and slave be given as: 
 
e  = y  − x ;   1 ≤ i ≤ n  
i i i  

e = e ;1 ≤ i ≤ n −1 (4)
i i+1    

en  = g( y, t) − f ( x, t) + d (t ) + u 

 
Error dynamics are then imposed by choosing an appropriate macro-variable or attractor that 

which in its turn is forced by an evolution constraint to reach the desired equilibrium point. The 

approach described, similar to the sliding mode approach, but without undesirable chattering, is 

called synergetic control and is briefly recalled in the next section. 
 

3. SYNERGETIC CONTROL OVERVIEW 

 
Synergetic control [10-11] has been around for a few decades and is acquiring rapid recognition 

by industrials and by the robust control community as well. Practical implementation is 

illustrated in power electronics [15-17] and in industrial battery charging [18]. Similar to sliding 

mode methodology, synergetic control is a robust technique with a continuous control law 
 

Therefore  without chattering. 
 
Basics of synergetic control synthesis for a nonlinear dynamic system described by (5) are 

introduced next. 
 

dx (t ) 
= f ( x , u , t) (5) 

dt  
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where x represents the system state space vector and u its control. Control synthesis begins by a 
 

suitable choice of a macro-variable function as in (6): 
 
ψ =ψ ( x , t) (6)

 
Where  ψ  and  ψ ( x , t)  designate designer chosen macro-variable and a corresponding a state 
Variables and time dependent function. Next a desirable manifold (7) is chosen on which the 
system will be forced to remain even in presence of unwanted disturbances or parameters 
fluctuations just as on a sliding mode surface. 
 
ψ = 0 (7)

 
Selecting macro-variable features can be realized through many possibilities accordingly with 
performance objectives and practical physical constraints. 
 
A macro-variable which can be a classic linear combination, is forced to evolve accordingly to 
the designer imposed constraint as in (8): 
 
Tψ +ψ = 0 (8)

 
Speed of convergence depends on selected  parameter T while state trajectories are driven 
towards the attractor given by (7). 

 
Synergetic control law is obtained via the following steps: 
 

dψ ( x , t ) 
= 

dψ ( x , t ) 
. dx (9) 

dt dx dt  

   
 

 
Using (5) and (6) in (8) leads to (10): 
 

T dψ ( x , t) 
f ( x , u , t ) +ψ ( x , t) = 0 (10) 

dx  

   
 

 
Resolving (10) for u gives the control law as: 
 
u = g ( x ,ψ ( x , t ), T , t) (11)

 
Synergetic control law u depends not only on system variables but on parameter T and macro-

variable 
ψ

 as well, enabling the designer to choose controller performance on a nonlinearized 

model. Macro-variables appropriate choice and astute manifolds enforce closed-loop overall 

stability and invariance to parameter variations [10] for when the system attains the specified 

manifold it remains on it. 
 

4. SIMULATION EXAMPLES 
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Consider the two chaotic uncertain systems [9], slave (12) and master (13), for which synergetic 

control is developped to stabilize both systems separately then synchronization via the same 

technique will be presented. Simulation of chaotic behavior will be illustrated for both 

autonomous and synergetic controlled systems. 
 

 

 

 

4.1 Synergetic control of chaotic systems 
 

The master system is given as (12): 

x1 = x2   (12) 

   

− x 
3  

x = −0.4 x +1.1x − 2.1cos(1.8t ); x(0) = [ −0.1; 0] 
 

2 2 1 1 
 

 
and the slave system equations are given by (13). 
 

y1 = y2    
(13) 

     

− y 
3  

y 
2

= 1.8 y − 0. y 
2

−1.1cos(0.4t ); y(0) = [1;1] 
 

 1 1 
 

 
Selecting macro-variable (14) for system (12) as : 
 

Ψ1 = x1 + k1 x1 (14)

and the constraint (15):  

T1Ψ1 +Ψ = 0 (15)

 

where k1 and T1 are designer chosen parameters. 

 
The same procedure is repeated for system (12) and simulation results are given in Fig.2 and 

Fig.3 for chaotic behaviour and in Fig.4 for synergetic controlled master system (12). 

 

 
Figure 2. Phase portrait of master system Figure 3. Master chaotic system output. 
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Figure 4.  Master system stabilized trajectories 

 
The second system (13) chaotic phase portrait and output are shown on Fig.5 and Fig.6 

respectively while Fig.7 represents its stabilized outputs. 
 

 

 
Figure 5. Slave system phase portrait Figure 6. Slave system chaotic output 
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Figure7. Slave system stabilized trajectories 
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4.2 Synergetic synchronization of the two chaotic systems 
 

It is now desired to synchronize the two chaotic systems using the synergetic approach. 

System (13) being selected as the slave system will be modified as to include synergetic 

control u(t) elaborated using the same procedure as before to the new augmented system 

which will include both systems as in (16). Eq.17 represents the new macro-variable which 

includes the error between the master and slave systems while a classic constraint (18) similar 

to previous one is chosen. 

x1 = x2 

x   = −0.4 x  +1.1x − x 
3
 − 2.1cos(1.8t ); x(0) = [ −0.1; 0]  

 

2  2   1 1  (16) 

y1 = y2 
        

        
 

y 
2 

= 1.8 y − 0. y 
2

− y 
3

−1.1cos(0.4t ) + u (t ); y(0) = [1;1]  
 

 1   1   
 

                                                                                           

The synchronization error e is chosen as:  e = y1 - x1   and the new macro-variable as: 

 

Ψ = ke + e = k ( y1 − x1 ) + ( y1 − x1 ) (17) 
 
and the new constraint as: 
 

TΨ +Ψ = 0 (18)

 
Straightforward steps lead to the synergetic control law and simulation results are embodied by 

figure (8) which indicates a rapid synchronization upholding chaotic behaviour of the systems 

despite the difference in initial conditions. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Synchronized chaotic slave-master outputs 

 
One can observe that despite different initials conditions the two systems are rapidly 

synchronised using synergetic control while staying in their chaotic states that which could 

eventually be used in securing data transmission. 
 

5. CONCLUSION 

 
Control of two chaotic systems has been adequately achieved, through simulation, using 
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synergetic approach. Furthermore their synchronization has been realized despite their different 

initial conditions. The approach is as robust as sliding mode methodology but relies heavily on 

model knowledge and on a non-systematic choice of control parameters. These issues are to be 

tackled by intelligent techniques like the fuzzy approach and controller parameters are to be 

optimized via evolutionary algorithms. 
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