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ABSTRACT 
 

In order to evaluate side-effect of power limitation due to the Fast Automated Demand Response 

(FastADR) for building air-conditioning facilities, a prediction model on short time change of average 

room temperature has been developed.  A room temperature indexis defined as a weighted average of the 

entire building for room temperature deviations from the setpoints.  The index is assumed to be used to 

divide total FastADRrequest to distribute power limitation commands to each building.In order to predict 

five-minute-change of the index, our combined mathematical model of an auto regression (AR)  and a 

neural network (NN) is proposed.In the experimental results, the combined model showedthe root mean 

square error (RMSE) of 0.23 degrees, in comparison with 0.37 and 0.26 for conventional single NN and AR 

models, respectively.  This result is satisfactory prediction for required comfort of approximately 1 degree 

Celsius allowance.  

 

KEYWORDS 
 

neural network, auto regression, smart grid, demand response, air conditioning 

 

1. INTRODUCTION 
 

The future smart grid will include a large amount of renewable energy sources (RESs) such as 

photovoltaic systems. These RESs are notorious for output power fluctuation depending on 

instantaneous weather variations.  As one of mitigation methods, a new technology of fast and 

large aggregation of power demand controls is emerging [1]. It is called smart grid demand 

response for ancillary services or Fast Automated Demand Response (FastADR). 
 

A large number of office buildings' air-conditioning is one of the principal targets for the 

FastADR because of large volume and flexible controllability [2][3].  In order to manage the 

FastADR of them, however, it is necessary to predict possible amount of power curtailment 

before activating the FastADR.  Many statistical prediction models on power consumption of air-

conditioning facility have been studied using such as AutoRegression (AR) or Neural Network 

(NN) methods[4]-[9]. Some recent studies began to deal with fine-time-granularity power 

response to the FastADR of office buildings' air-conditioningfacilities [10][11].  However, 

regarding side-effect of the FastADR, i.e., adverse effect on comfort due to power limitation, the 

prediction of change in room temperature has been scarcely investigated so far. 
 

In Japan and many other countries, Variable Refrigerant Flow (VRF) type air-conditioning 

facilities [12][13] are popular for small or medium size office buildings. Since a VRF facility is 

equipped with its embedded refrigerant control system, the instantaneous power consumption 

looks spontaneous from the FastADR controller’s point of view. Constructing a prediction 

modelon the dynamic response of power consumption and resulting temperature change of the 

VRF air-conditioning facility is a challenging task. 
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Because the FastADR causes abrupt changes of power limitation, the responses of instantaneous 

power and room temperature show significantly non-linear and stochastic characteristics.  Since 

NN models are known as relatively robust to the non-linearity, prediction of instantaneous power 

seems to be suitable with the NN modelling. On the other hand, statistical but gradual progressive 

changes in room temperature seem to suite well with the AR model.  There are some research 

studies on combination of different prediction models [14]-[18].  We have applied the 

combination approach to obtain the cross-effect model between both the power and temperature 

as well as our previously proposed AR-NN combined modelling method [19]. 

 

In this paper, we propose a "room temperature index" that evaluates the FastADR's side-effect on 

degradation of comfort regarding room temperature. Our AR-NN Combined model for prediction 

of the room temperature index of 5 minutes after the FastADR activation was developed using 

time series data of an actual office building. In the experimental results, the Combined model 

showed the root mean square error (RMSE) of 0.23 degrees, in comparison with 0.37 and 0.26 for 

conventional single NN and AR models, respectively. 

 

2. FASTADR POWER LIMITATION AND ITS SIDE-EFFECT 
 

2.1. Power Limitation Distribution for FastADR Aggregation 
 

Figure 1 shows a concept diagram of the smart grid FastADR of a cluster of widely distributed 

VRF air-conditioning facilities of office buildings.  Although there is only one Aggregator in the 

figure because of the figure space, three will be many Aggregators each of that manages its own a 

large number of buildings.  Each Aggregator receives the FastADR request from the Demand 

Response Automation Server (DRAS) [20][21]in the electric company in order to compensate to 

the variation of RESs instantaneous power fluctuation. 

 

Our motivation is to construct prediction model on change in the average room temperature of the 

building, that is to evaluate the side-effect of the FastADR of building air-conditioning facilities.  

The room temperature index will be used for the Aggregator todivide the DRAS's FastADR 

requestamount into a number of power limitation commands for each building.An example 

algorithm will be as follows.  Firstly, the Aggregator temporally divides the DRAS's FastADR 

request amount into each power limitation commands in proportional to each building's current 

power consumption value.  Then, by using the prediction model, the Aggregator evaluates the 

 

 
 

Figure 1.  The conceptual diagram of the Fast Automated Demand Response Aggregation 

System for a widely-distributed buildings' facility loads. 
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five-minute-change of room temperature index for each building.  If any changes of the indexes 

are not acceptable, the Aggregator reduces the power lamination command value for the problem 

buildings and again distributes the revised commands to all the buildings.  Such a way, the 

Aggregator will be able to distribute reasonably-divided power limitation commands.  

2.2. VRF Type Building Air-Conditioning Facilities 

 
Figure2 shows a refrigerant circuit of VRF air-conditioning system.   An outdoor unit contains a 

heat exchanger, a blower fan, a refrigerant gas compressor, and its inverter.  Each outdoor is 

connected to a number of indoor units with refrigerant gas/liquid circuit piping.  Each indoor unit 

contains a heat exchanger, a blower fan, an electronic expansion valve (EEV), and a controller.  

The indoor unit controller modulates its EEV to regulate the refrigerant flow into its own heat 

exchanger according to heat load of the indoor unit. 

 

Each indoor unit periodically sends a requesting refrigerant flow, ReqRef message to the outdoor 

unit.  The outdoor unit periodically sums up these requests and modulates its total output flow by 

varying speed of the compressor.  The outdoor unit then distributes to each indoor unit an 

answering refrigerant flow,AnsRef message.  Each indoor unit regulates the opening of its EEV 

according to the value of each AnsRef message. 

 

The power consumption is determined by both the power limitation command from the 

Aggregator and the above-mentioned ReqRef-AnsRefrefrigeration circuit control. Using this 

control each room temperature is controlled to each setpoint by adjusting the inverter power   

continuously.  In addition, state-of-the-art refrigeration controlssuch asoil-return 

exceptionoperations or refrigerant pressure adjustment controls and so on are superimposed time 

to time..    The total air-conditioning facilities of the entire building is far more complicated than 

residential air-conditioners. Therefore, short time prediction onthe response of room temperature 

change due to the power limitation to the inverter-driven compressors is a challenging task.   

 

In case of steady states, air-conditioning heat balancing can be calculated by traditionalmethod.  

However, it is difficult to construct a dynamic response mathematical model for room 

temperature response due to step change of power limitation.  For the total building, there may be 

more than 100 room temperature points.  It is almost impossible to make a response prediction 

model from physical differential equations for each building' structure and facilities' construction.  

 

 
 

Figure 2.  The refrigeration circuit of VRF type air-conditioning facilities. 
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We decided to construct a statistical prediction model from time-series data of air-conditioner's 

operations. 

 

2.2. Room Temperature Index 

 
An index in some form is needed to evaluate occupants' comfort degradation as the side effect 

due to the FastADR power limitation. We focus on the deviation of room temperatures from 

corresponding setpoint temperatures.  Since a FastADR Aggregator service provider has to take 

care of many buildings, the number of pairs of room temperatures and setpoints will be hundreds 

or thousands. 

 

As mentioned above, the motivation of introducing the room temperature index is to obtain a 

reference for division of the total FastADR request amount into each Power Lamination 

Command for each building according to each building's air-conditioning situation.  Only relative 

index between buildings is enough instead of each room temperature.  Therefore, we take the 

average of each deviation of room temperature from the corresponding setpoint for the total 

building.  As each indoor unit capacity and room space area varies significantly, the rated air-

conditioning capacity of the indoor unit is used as the weight averaging to take each room's size 

effect into account. 

 

We define theroom temperature index of a building as the weighted averageroom temperature 

deviation TSA(t) at the discrete time t as 

 

������ = {∑ 
������ − ������
��
�
��� }/ ∑ ��

�
���  (1) 

 
where m(= 1, 2, ... ) is the number of indoor unit,M is total number of indoor units in the building, 

Cm is each indoor unit's rated cooling capacity, TAm(t) is measured room temperature, TSm(t) is 

setpoint temperature, of the mth indoor unit at one-minute discrete time t.  

 

Since the room temperature indexTSA(t) is the weighted average of deviations of room 

temperature from the setpoint, we assumed TSA(t) represents general index of buildings residents' 

comfortableness by its smallness. In general, the absolute value of TSA(t) in sufficiently 

comfortable room is said to be less than approximately 1.0 degreeCelsius. 

 

3.AR-NN COMBINED MODEL 
 

3.1. Prediction Model for Room Temperature Index 
 

Our AR-NN combined model was proposed for modelling the above-mentioned room 

temperature index change by the FastADR power limitation. In the Combined model, the inputs 

are time series data of P(t)s  and TSA(t)s, and the output is TSA(t+tF) of a few minutes later tFfrom 

the time t when the power limitationPL(t)was changed. 

 

Our Combined modelcontains individual two models, an NN model and an AR model, as shown 

in Figure 3.  In Figure 3, t is discrete time of 1 minute unit, PL(t) is the power limit, P(t) is the 

power consumption at t, TSA(t) is the room temperature index at t, TO(t) is outdoor temperature of 

the building, and TSA(t+l) is 1 minute future value. 

 

The Combined model collects and complements input data to vectors of time series data in pre-

processing. First, all of input data up to the present are collected in the pre-processing. Second, 

missing data in collected input data are complemented with liner interpolation using existing data 

of before/after missing. Finally, the pre-processing passes necessary data from its collected data 
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to the NN and AR models. The submitted data sets are a part of whole data sets, which are 

selected for training the models. 

 

The NN and AR models predict the room temperature index individually, and TSA(t+tF) is given 

by the following combining equation with predicted value notation * as T*SA(t+tF) 

 

���
∗ �� � ��� = ���������� � �1 − ��������′����    (2)   

 

In equation (2), a set of inputtime-series data is pre-processed to make input vectors of x(t) and 

x'(t) to the NN and AR model, respectively.The outputs ��������� and ����� � 1� from the NN 

and AR model are combined with coefficients �and 1-	�.  The coefficient� is ranged between [0, 

1].  In order to f
NN(x) is an output function of NN model by input x, andf

AR(x) is an output 

function of the AR model by input x. 

 

���� = !������, ����� − 1�, ����� − 2�, $���, $�� − 1�, $�� − 2�, $%�� � 1�, 
$%���, �&���, �&�� − 1�, �&�� − 2�'( (3)  

��������� = )*+,-*.
∑ /0 1 )*+,-*.
∑ 230 1 �3���4
3�� 
5

0�� 
 (4) 

)*+,-*.�6� = 1/�1 � 789:� (5) 

���
���� � ��� = ��������� = ��������� (6) 

 

where y
NN

(x(t)) is the output of the NN for predicted value at 5 minutesafter from the time t, i(= 1, 

2, ... ) is the node number in the input layer, I(= 11) is the total number of input layer's nodes,  j(= 

1, 2, ... ) is the node number in the hidden layer,J(= 15) is the total number of hidden layer nodes.  

The model parameteruij is the weight of connection to the hidden layer nodes from the input layer 

nodes, wj is the weight of connection to the output layer node from the hidden layer nodes.  The 

vectorxi(t) is the input from the pre-processing, specifically, the power limit from PL(t) to PL(t+1), 

the power consumption from P(t-2), P(t-1) to P(t), the room temperature index from TSA(t-2), 

TSA(t-1) to TSA(t), and outside temperature from TO(t-2), TO(t-1)to TO(t). The functionSigmoid(z) 

was used as the activation function for any real number variable z. 

 

3.2. Auto Regressive Model 

 
In our previous research work [19], we proposed the AR-NN Combined model for the above-

mentioned room temperature index change by the FastADR power limitation. In the Combined 

model, the inputs are time series data of P(t),TSA(t), and the output is TSA(t+1) at one minute after 

from the power limitation. 

 

 

 
 

Figure 3.  The structure diagram of the AR-NN Combined model on the room temperature 

index for the FastADR Aggregation side-effect prediction. 
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Table 1.  Outline of a sample office Building 

 

Item Specification 

Type of building General purpose office 

Dimension  2 story, area app. 3000 m2 

Structure of building  Steel frame concrete building 

No. of outdoor units 3 outdoor units 

No. of indoor units 18 indoor units 
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The AR model predicts the room temperature index TSA(t+1) at 1 minute after the current time t 

using preceding input data received from pre-processing.  Its prediction after 5 minutes TSA(t+5) 

is obtained by repeating the 1 minute prediction five times  using the pervious AR predictions. 

 

Our AR model equations are 

 

�;��� 	 = 	 !������, $���, $%���]< (7) 

����� + 1� 	 = 	 ∑ =>���?� >�@�?� >�A�?�
>@��?� >@@�?� >@A�?�B%8�?�C �;�� − D� (8) 

����� + 1� 	 = [����� + 1�, $�� + 1�]< 	 = 	 [������ + 1�, 	�@���� + 1�]< (9) 

 ������� + ��� 	 = 	 ������ + ��� 	 = 	 �����;���� (10) 

 

where y
AR

(t+1) is predicted state vector after 1 minute from the current time t, x(t-l) is input state 

vector at t-l, and A is an AR coefficient matrix. The elements of input/output state vectors consist 

of power limit PL(t), actual power consumption P(t), room temperature indexTSA(t).  The AR 

model's order L was decided as L = 7 using the AIC (Akaike Information Criterion) method [22]. 

Each element of the AR coefficient matrix A was decided by the least mean square method using 

the same training data as the NN case. 

 

4. EXPERIMENTS ON PREDICTION 
 

4.1. Time Series Data from an Office Building 
 

Table 1 shows overview of the sample building air-conditioning facilities.  The time series data of 

the power consumption P(t), room temperature index TSA(t), and power limit PL(t)were acquired 

from an actualoffice building of two stories which contained eighteen indoor units and three 

outdoor units of air conditioning systems.  The interval of the time series data was one minute. 

The building’s power consumption was controlled by changing the power limitationPL(t) every 

ten minutes. 

 

The number of measured time series data sets was 8640 including 864power limitationcommand 

step changes, and the number of usable data sets was3400 including 340 limitation changes. 

These measured time-series data were divided into three groups, namely, the training, 

optimization, and test data sets of166, 78, and 96, respectively. 
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4.2. Model Construction and Experiment Results 

 

The model parameters of the single NN and AR models weredetermined using the above-

mentioned training time-series data sets in advance of the model prediction tests. The 

combination coefficient � of the Combined model was decided as an optimized value by a 

statistical measure, root mean square error (RMSE) to the optimization data sets of 78 which are 

not used in the model training and tests. 

To construct the Combined model for predicting the room temperature index TSA(t+5), the NN 

and AR models learned using training data for construction the Combined model.  The each 

variable of state vector of NN was normalized in ranged of [0.0, 1.0] and learned using 100,000 

times of each training data sets. In addition, final NN were experimentally chosen by results of 

this training process trial. The AR was learned by least-squares method using the same training 

data sets. 

Figure 4 shows an example of prediction test.  After the power limitation PL(t) is activated as 

shown by the arrow at 15:30, the room temperature index TSA(t) changed its trend from decreasing 

to level.  The difference between predictedT*SA(t+5)  and actualTSA(t+5) was measured many 

times.  We evaluated the performance of the prediction model using the root mean square error 

(RSME)was use as a statistical measure. 

 

EF)G = H�
I ∑ J���∗�K��� + 5� − ����K��� + 5�M@IK��  (11) 

 

where D is the total number of test data sets, d( = 1, 2, ... ) is thenumber of each power 

limitationstep response data set. 

 

The best combined model for the optimization data was obtained when � = 0.53. The RSME of 

the best combined model was compared with those of the NN and the AR models in Figure5.  

The RMSEs for the NN, AR, Combined models were 0.37, 0.26, and 0.23, respectively. It means 

38 % and 12 % relative improvements of RMSE were achieved. 

 

 

 

 
 

Figure 4.  An example of comparison between model prediction and actual measurement of 

the room temperature index TSA(t+5). 
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5. DISCUSSION 

 
The reason why the improvement of RMSE from the NN model to the Combined model was more 

effective than that from the AR model seems to be that the target time-series data characteristics 

of the weighted average of room temperature deviation from the setpoint are governed by linear 

data generation source.  From a physical point of view, the dynamic behavior of the room 

temperature is a linear heat transfer process.  This physical understanding agrees our result that 

the RSME of the linear AR model is more similar that that of the non-linear NN model. 
 

So far, in research studies on the FastADR using air-conditioning facilities, side-effect on the 

room temperature, i.e., residents' comfort caused by power limitation has not been dealt 

quantitatively [2][3][10].  This research has shown a possibility that the FastADR power 

limitation commands to air-conditioning facilities can be divided and distributed maintainingeach 

building's comfort level kept within the pre-determined range. 
 

Our room temperature index represents the total average of the entire building for power 

limitation command division and distribution to each building.  Of course, each room might have 

different allowance for the room temperature change, priority allocation to each indoor unit can 

be adjusted by the local controller in each building as long as the total average room temperature 

change is kept within a criterion.  Our prediction model for the room temperature index will 

provide an effective management method on this issue. 
 

6. CONCLUSIONS 
 

In this research work, a prediction model on short time change of average room temperature has 

been developed.   A room temperature index is defined as a weighted average of the entire 

building for room temperature deviations from the setpoints.  In order to predict five-minute-

change of the index, our combined mathematical model of an auto regression and a neural 

network is proposed.   
 

In the experimental results, the Combined model showed the root mean square error (RMSE) of 

0.23 degrees, in comparison with 0.37 and 0.26 for conventional single NN and AR models, 

respectively.  This result is satisfactory prediction for required comfort of approximately 1 degree 

Celsius allowance. 

 

 

 

 
Figure 5.  Comparison of the root mean square error among the NN, AR, and  Combined 

models for the room temperature side-effect prediction. 
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