
International Journal of Applied Control, Electrical and Electronics Engineering (IJACEEE) Vol 2, No.2, May 2014 

1 

 

 
A NOVEL TECHNIQUE FOR CONTROLLER 

TUNING 
 

Mohammad Amin Rashidifar
1
 and Abdolah abertavi

2 

 

1
Department of Mechanical Engineering, Islamic Azad University, SHADEGAN Branch, 

Iran 
2
 Department of Electrical Engineering, Islamic Azad University, SHADEGAN Branch, 

Iran 
 

Abstract 
 

Neural networks and genetic algorithms have been in the past successfully applied, separately, to 

controller tuning problems. In this paper we purpose to combine its joint use, by exploiting the nonlinear 

mapping capabilities of neural networks to model objective functions, and use them to supply their values 

to a genetic algorithm which performs on-line minimization. Simulation results show that this is a valid 

approach, offering desired properties for on-line use such as a dramatic reduction in computation time and 

avoiding the need of perturbing the closed-loop operation. 
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1. INTRODUCTION 
 

Neural networks (NNs) and genetic algorithms (GAs) have been applied, successfully, for 

controller tuning, during the last years, in several applications. Until now, however, they have 

been applied separately, exploiting the nonlinear approximation capabilities of neural networks, 

on one hand, and employing genetic algorithms for optimization purposes. In this paper, we 

purpose the joint use of these two tools to obtain, in real-time, the tunings achieved by time-

consuming optimization procedures. 

 

The paper is organized as follows: As this work arises from neural network PID autotuning 

techniques introduced previously, these will be briefly described in Section 2.  Section 3, the 

main core of the paper, justifies the above claim by the mean of examples. This way, Section 3.1 

considers controller tuning of a fixed plant. Section 3.1.1 describes a PID autotuning scheme 

based on two performance indices, while Section 3.1.2 illustrates the tuning of a lag-lead 

controller based on six control specifications. Preliminary results concerning the update of this 

technique to the control of time-varying systems will be illustrated in Section 3.2. Final remarks 

are given in Section 4. 

 

2. EXISTING PID AUTOTUNING TECHNIQUE 
 

The work described in this paper arises from previous work in neural network PID autotuning, 

and, for this reason, it is briefly reviewed in this section. Two approaches were introduced (Ruano 

et al., 1992), (Mamat et al., 1995), differing mainly in the identification measures employed. 

Basically, the neural networks, previously trained off-line, are used to supply, in real-time, the 

PID parameters to a standard PID controller.  
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Concentrating here in the first (chronologically) of the two approaches (Ruano et al., 1992), in 

this technique three MultiLayer Perceptrons (MLPs) are used, each one of them supplying one of 

the PID parameters to a PID controller. As the identification measures employed may be obtained 

in open and in closed loop, this technique is applicable to both, with similar tunings being 

achieved in both situations. 

 

2.1. Neural network inputs 
 

Let us consider a plant with transfer function: 
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The identification measures F( )α : 
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for a range of values of α, will be used to identify the plant. In order to serve this purpose, α must 

be related with the time delay ( d p ) and time constants (τ ) of the plant. An algebraic sum of 

these factors, TT: 
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is used as a scaling factor for α: 

[ ]α
σ
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, . ,0110      (4)    

 

For the sake of the following explanation it is convenient to express the identification measures in 

terms of σ: 
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These last identification measures, F(σ), are the inputs of the MLPs. The advantage of using them 

is related to the fact that they can be obtained in real time, both in open and in closed loop, 

through the use of integral measures of the output and/or the control signal (please see Ruano et 

al., 1992).  
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2.2. Neural network outputs 
 

The outputs of the MLPs ( )k T Tc i d

' ' ', ,  are the parameters of the PID controller ( )k T Tc i d, , , 

conveniently scaled. Specifically: 
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2.3. Neural network training 
 

Before being used in real-time control, the MLPs are trained off-line. In order to obtain good 

results from this technique, two conditions must be fulfilled: 

 

• The examples employed for training must cover the whole operational range of the 

controller. An indirect way to solve this problem is to have an a priori knowledge of the 

types of transfer functions, as well as the range of its time constants and delay times that 

are exhibited during the lifetime of the process. Discretizing this multidimensional space, 

suitable examples required for training can be obtained.  

 

• For every transfer function in the training set, it is necessary to determine the 

corresponding PID values. Although any tuning criterion can be employed, which accounts 

for the versatility of the proposed technique, a suitable criterion that produces well-damped 

responses should be selected. Thanks to its selectivity, the Integral of Time multiplied by 

the Absolute Error (ITAE) is used in our method. 

 

After having obtained the training data, the MLPs are trained using a fast training algorithm 

(Ruano et. al., 1991a).  
 

2.4. Results obtained 
 

This technique has been shown, whether in simulations (Ruano et al, 1992) or in real-time (Ruano 

et al, 1991b), to produce good results, as long as the plant under control lies within the boundaries 

of the training space.  

 

3. CURRENT WORK 
 

In the approaches previously introduced, the neural network parameters remain fixed after the 

off-line training phase. Excellent results have been obtained with both approaches, as long as two 

conditions are fulfilled: 

 

• the training data adequately spans the input space of the neural networks, and 

• the actual plant to be controlled lies within the training space.  

 

The neural PID autotuners can be somehow envisaged as blind experts, who were previously 

taught how to control plants within a certain range, and subsequently perform their task in a very 

efficient manner. Unfortunately their performance is not improved as a result of continuously on-

line operation. 

 

On the other hand, the controller is tuned based only in one tuning criterion, in this case, 

reference following. It would be of interest to consider, additionally, other tuning aims, such as 

disturbance rejection, bandwidth criteria, etc. 
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Current research tries to address these two problems: incorporation of more than one criterion in 

the tuning and improving on-line the tuning capabilities of the neural networks. Our final aim is 

to implement a system as the one shown in Fig. 1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure1. PID control using a neuro-genetic auto-tuner  

 

This paper describes current work that is being developed towards that final objective. 

 

3.1. Use of simultaneous tuning criteria  
 

In this case, we consider that the plant is fixed, and that the controller will be tuned considering 

more than one objective. A Genetic Algorithm will determine the optimal value of the controller 

parameters, and for that, the neural networks, previously trained off-line, will deliver the 

objective functions to the GA. We shall consider, under this framework, two examples. 

 

3.1.1. PID Auto tuning 
 

Considering again the PID autotuning problem, let us assume that our plant has transfer function: 
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And is subject to PID control with the topology shown in Figure 2. 

 
 

 

 

 

 

 

 

 

 

Figure 2.  PID Control of plant (7) 
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Where R(s) is the input reference, Y(s) is the output response, PI(s) is the proportional + integral 

block with transfer function given by (8):   
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And D(s) is the derivative block with transfer function given by (9):   
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Where
10

T
T d

f = .  

 

In this case, we consider only two objectives for PID tuning, namely, reference tracking and 

output disturbance rejection. This way, we define the following criteria that we pretend to 

minimise, (10) and (11). In what concerns reference tracking, the ITAE criterion to a reference 

step is employed:   

( )dttetITAE ∫=        (10) 

 

Where ( ) ( ) ( )trtyte −= . 

 

Relatively to output disturbance rejection, considering a null reference and a unit step added to 

the G(s) output, the criterion to minimise is (11): 

 

( )dttytITAY ∫=      (11) 

 

Two MLPs are used to approximate the mappings between the PID parameters and the criteria 

(ITAE and ITAY) described above. 

 

The NN inputs are PID normalised values defined by (6). In the current application, with the 

transfer function (7), we have 2TT =  and kp=1. 

 

The NN outputs are normalised criteria values given by (12): 
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After having determined that the best topology for this application was [ ]1   5   9   3 , (3 input 

neurons, 9 neurons in the first nonlinear hidden layer, 5 neurons in the second hidden layer, and 

one output neuron), the MLPs were trained using a fast training algorithm (Ruano et al, 1991b), 

and used to output the objective functions to the GA algorithm. The GA is employed to minimise 

a function that takes into account the two objectives defined by (10) and (11). Representing the 

function to minimise by f(), we have: 

 

( ) ( ) ( )dic2dic1dic T,T,kITAYwT,T,kITAEwT,T,kf +=   (13) 



International Journal of Applied Control, Electrical and Electronics Engineering (IJACEEE) Vol 2, No.2, May 2014 

6 

 

In Fig.3 and Fig. 4, we compare the closed-loop responses in three different situations:   

 

a) The optimal PID values are obtained employing a common gradient method for the ITAE 

minimization. In this case the ITAE values are computed by dynamic simulation, i.e., no 

neural network is employed;  

b) The optimal PID values are obtained by a GA minimizing the ITAE criterion. The ITAE 

values are obtained using the trained neural network; 

c) he PID is tuned by Ziegler & Nichols tuning rules.   

 

In Fig. 3 y(t) represents the closed loop step output response with a null disturbance. Fig. 4 

represents the closed-loop output response when the reference is set to zero, and an unit step 

disturbance is added to the plant output.  

 

In both figures the upper part represents the response y(t), and the lower part represents the 

evolution of the ITAE and ITAY, respectively. In both figures the dashed-dot line represents 

situation a), the solid line b), and the crossed (heavy) line situation c). 

 

 

 
 

Figure 3. Reference tracking: comparison between situations a), b) and c) 

 

 
 

Figure 4. Disturbance rejection: comparison between situations a), b) and c) 

 

Analysing these figures, we can conclude that, by employing the neural network as a model for 

the ITAE, together with the GA, better results than employing a common gradient minimization 

technique together with dynamic simulation, and much better than the Ziegler-Nichols results, are 
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achieved. More important, situation b) takes an insignificant fraction of the time taken by 

approach a), and, since there is no need to perturb the control loop to compute the ITAE, it can be 

employed in real-time. 

 

In Fig. 5 and Fig. 6, the optimisation was just performed using the GA, and the neural networks 

as models of the objective functions. In each figure we can compare the results of three different 

optimizations, corresponding to different combination of weights w1 and w2 in eq. (13). In these 

figures, the dashed-dot line represents 1  w,1w 21 == , the solid line 0  w,1w 21 == , and the 

crossed (heavy) line 1  w,0w 21 ==  

 

 
 

Figure 5. Reference tracking. GA optimisation: comparison between three objective functions. 

 

 
 

Figure 6. Disturbance rejection. GA optimisation: comparison between three objective functions. 

 

We conclude that the neural networks proved to be effective as ITAE models, and, for this 

particular plant, the results obtained for tracking and disturbance rejection do not differ very 

much. 

  

3.1.2. Controller tuning 
 

We consider here the case of controlling a plant with transfer function: 
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The objective is to design a controller: 
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That satisfies the specifications: 

 
Table 1. Design specifications 

 

 Ess Ts Tp % Os BW –3 

dBs 

BW – 40 

dBs 

Specification

s 
≤ 0.02 ≤ 0.3 s ≤ 0.1s ≤ 20 % ≥ 25 rad/s 

≤ 60 rad/s 

≤ 300 rad/s 

 

Ess is the steady-state error, Ts is the settling time, Tp is the peak time, %Os denotes the 

percentage of overshoot, and BW the bandwidth.  

 

Six Radial-Basis-Function networks (RBFs) were trained off-line to approximate the mappings 

between the controller parameters (k, �1 and �2) and the corresponding control specifications. 

An additional RBF was trained to classify between acceptable and non-acceptable (unstable or 

near unstable) parameter values. After that, the neural networks were used to supply the objective 

values to a GA minimizing the single objective: 
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An initial population of 75 random individuals was created, and after 30 iterations of the GA, the 

closed loop response obtained with the optimal parameters found is shown in Fig. 7. 
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Figure 7 - Closed-loop output obtained with the optimal parameters 
 

The closed loop frequency response can be found in Fig. 8.  The value obtained for Ess was 0.036. 

We can therefore conclude that all the specifications were fulfilled, with the exception of the error 

in steady state, and the peak time, which were slighted bypassed. Comparing the number of flops 

spent in the GA optimization process using the neural networks to deliver the objective functions, 

and the GA employing a Simulink model to obtain the objectives, a saving of more than 14 times 

was obtained. As the results illustrate, the neural networks proved again their capability to model 

objective functions. 

 

 
 

 

Figure 8. Closed-loop frequency response obtained with the optimal parameters 
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3.2. Time-varying plant 
 

We consider, at this stage, only one objective, and that the plant is time-varying. If MLPs or, in 

less extent, RBFs are employed, as these are memoriless networks, on-line training within one 

region of the input space can modify the mapping achieved in different regions of the input space, 

which is an undesirable feature. For this reason, the neural networks used here, and in our final 

objective, are B-spline neural-networks (Brown and Harris, 1994).  B-spline networks are a kind 

of Associative Memory Networks which differs from the others because they store information 

locally (“learning” about one part of the input space minimally affects the rest of it). To overcome 

the problem known as curse of dimensionality and in order to obtain, during off-line training, a 

good network structure for later on-line training, we employ the ASMOD construction algorithm 

(Weyer, 1995). 

 

Focusing our attention here in just the neural network responsible for delivering the PID values 

(NN PID in Fig. 1), the plant considered has a transfer function  
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From which we obtain the identification measures ( )σF , given by (5), considering only 1=σ . 

Some of the identification measures from this set (6 out of the 30 examples) are used to off-line 

train three neural networks. As in this case we are considering PID control, tuned by the ITAE 

criterion, their outputs are optimal scaled PID values given by (6). In order to determine the order of 

the B-splines to be employed, networks of order 2, 3 and 4 were constructed and trained off-line. It was 

verified that the best results were obtained with networks of order 3. For this case, after off-line training, we 

have verified that the neural networks have “learned” exactly the supplied training set. 

 

Afterwards, six passes of on-line learning over the whole 30 examples were performed. The following 

table, where the unit employed is 10-3, summarizes the results obtained. 

 

For each neural network, three measures of the quality of the approximation obtained for the whole 30 

examples are presented: the commonly used sum of the square of the errors, this quantity, but scaled by the 

sum of the squares of the target patterns, and the sum of the square of the relative errors. It can be observed 

that there is a steady decrease in all the refereed measures, starting from the situation where just off-line 

training had been performed (Initial row). Figures 9a) to c) illustrate the evolution of the relative errors, as 

on-line learning is performed.  

 

It should be noted that a special care must be taken in the selection of the on-line learning rate. 

The previous results were obtained with a learning rate of 0.1, as attempts to adapt the networks 

with learning rates of 0.2 and 0.5 shown that the neural networks performance was worse. So, the 

learning rate chosen must be as small as necessary to guarantee an improving of performance with 

the on-line adaptation.  
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Table 2. Best results obtained in the off-line training of the ITAE network using different training strategies.  
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Figure 9a) – Evolution of the relative errors for the 
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k  neural network. 
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Figure 9b. Evolution of the relative errors for the 
i

t  neural network. 
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Figure 9c. Evolution of the relative errors for the 
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t  neural network. 
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4. CONCLUSIONS 
 

In this paper the joint use of genetic algorithms and neural networks for controller tuning was 

discussed. Simulation results show that neural networks can approximate well the tuning 

objective functions to deliver, on-line, these values to a genetic algorithm responsible for the 

minimization of the tuning criteria. The controller optimal values obtained by this procedure 

deliver good closed-loop tunings. More important, these tunings can be obtained in a fraction of 

the time spent if neural networks would not be employed, and there is no need to submit the 

closed loop to perturbations, properties that make this approach suitable for real-time control.  

Future work will address the off-line and on-line training of  B-spline networks responsible for 

the modelling of the objectives, and will look at the incorporation of multiobjective optimization 

tecnhiques in the proposed approach. 
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