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ABSTRACT 

 

This paper shows modeling of highly nonlinear polymerization process using the artificial neural network 

approach for the model predictive purposes. Polymerization occurs in a fluidized bed polypropylene 

reactor using Ziegler - Natta catalyst and the main objective was modeling of the reactor production rate. 

The data set used for an identification of the model is a real process data received from an existing 

polypropylene plant and the identified model is a nonlinear autoregressive neural network with the 

exogenous input. Performance of a trained network has been verified using the real process data and the 

ability of the production rate prediction is shown in the conclusion. 
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1. INTRODUCTION 

 
Intelligent control methods belongs to the control techniques that use various artificial 
intelligence computing approaches like fuzzy logic, machine learning, evolutionary computation, 
neural networks and genetic algorithms. General description could be that intelligent control 
achieves the control engineering via emulation of a biological intelligence [22]. For better 
understanding of the neural networks, imagination of a multi-dimensional input-output space is 
needed. Suppose this multi-dimensional space as a two input and one output space.  
 
1.1 Neural Networks 

 

Definition 

 

Artificial neural network simulates main behavioral functions of biological neurons by collection 

of multiple signals - inputs, the threshold switching function - activation function and adaptation 

of the transmission rate of inputs - adaptation of the weights of particular inputs. 

 
In Figure 1 an artificial neuron is showed with n inputs and n weights to produce a single output 
using sigmoid characteristic - the activation function. 
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Figure 1.  

Typical Neural Network (NN) structures include feed
back networks can have signals travelling in both directions (from input to output and from 
output to input) by introducing loops in the network [4]. Feed
complicated. Feed-back NNs are dynamic 
an equilibrium point [3]. They remain at the equilibrium point until the input signals change
a new equilibrium needs to be found. Due to feedback there is no guarantee that the networks 
become stable. Feed-back networks can converge to one stable point, limit
Another type of NN is a multilayer feed
 
The basic element of a neural network is a simple computational or processing unit that is 
characterized by  
 

1. �� ∈ ����  - a vector of weights
2. �� ∈ � - a bias or offset 
3. 	:� → � - an activation function

 
If � ∈ �� is an input vector, fed to the processing unit, the activation function computes 
	����� � ��� and this value is then taken as an output of the unit. If we connect a finite number 
of such units in parallel into a layer and subsequently connect a finite 
in series only by feed forward connection we create an architecture called multilayer feed 
forward neural network of a multilayer perceptron (MLP), shown in Figure 2.
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Figure 1.  Block scheme of artificial neuron  

 
Typical Neural Network (NN) structures include feed-back and feed-forward NNs. The feed
back networks can have signals travelling in both directions (from input to output and from 

cing loops in the network [4]. Feed-back networks can get extremely 
back NNs are dynamic - their state is changing continuously until they reach 

an equilibrium point [3]. They remain at the equilibrium point until the input signals change
a new equilibrium needs to be found. Due to feedback there is no guarantee that the networks 

back networks can converge to one stable point, limit-cycle or divergent. 
Another type of NN is a multilayer feed-forward NN.  

element of a neural network is a simple computational or processing unit that is 

a vector of weights 

an activation function 

is an input vector, fed to the processing unit, the activation function computes 
and this value is then taken as an output of the unit. If we connect a finite number 

of such units in parallel into a layer and subsequently connect a finite number of such unit
in series only by feed forward connection we create an architecture called multilayer feed 
forward neural network of a multilayer perceptron (MLP), shown in Figure 2. 
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To make possible any range for the MLP outputs ��&6. [49] Overall family of functions  that 
can be realized by an MLP is characterized by  
 

1. The number of inputs and outputs 1� , 17; 
2.  The number of layers ��, including the output layer 
3.  The number of nodes in hidden layers �&( , � � 1,2, … , �� / 1 

4.  The set of weights ��� 
�  and biases ���� 

5.  The processing function 	���. 
 
The process of iterative tuning of weights and biases is called learning. 
 
Hebian learning algorithm increases a weight 8� between a neuron and an input !�, if 
the neuron 9 fires. 

∆8� � 49!� 
where 4 is learning speed. Weights are strengthened if units connected with the weights 
are activated. Weights are normalized to avoid an infinite increase of weight value. 
 
Levenberg - Marquadt algorithm is the most used and most effective supervised learning 
algorithm for majority of tasks. It is a back-propagation algorithm which iteratively 
determines weights of the feed-forward NN. 
 
Let assume that vector : is an error between the NN output ;<	and desired - supervisory 
output data >. The superscript means a layer number, so ;< means an output from output 
- final layer. The NN outputs depend on synaptic weights so  the : must be a function of 
weights ?.  
 

@�?� � 1
2$,; A / > -5

&B

 +#
 ( 7) 

 
The searching direction of smaller error is determined by calculating a partial 
differential. The searching direction is then\ 
 
 C � /D@�?�

D?  ( 8) 

 
Weight update rule of LMA is then determined by 
 
 ?EF# � ?E / �GE�GE � HI�%#GEJE ( 9) 

 
where �GE�GE � HI� is the Hessian matrix in k-th step. In order to make sure that the 
Hessian matrix is always invertible Levenberg-Marquadt added combination coefficient 
H. When combination factor H is small (almost zero), the equation will result into  
 
 ?EF# � ?E / �GE�GE�%#GEJE ( 10) 

 
where Gauss - Newton algorithm will be used. On the other hand, when the combination 
factor is too large the equation will result into 
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 ?EF# � ?E / KCE ( 11) 

 
where the Steepest Descent Algorithm will be used. 
 
Since the calculation is conducted in direction from the output layer to input layer, this 
algorithm is named the back-propagation algorithm. When a sigmoid function is used for 
the activation function of neurons, 
 L�!� � 1

1 � 2%MF� ( 12) 

the differential is determined as, 
 
 DL�!�

D! � ,1 / L�!�-L�!� ( 13) 

 
and the calculation of the algorithm becomes simple. 
 
2. NONLINEAR PROCESS IDENTIFICATION 

 
Many studies have been reported focusing on the petrochemical industry, especially the 
polymerization process. The polymer materials are widely used in many different areas. Due to 
the high and differentiated market demand of polymers, the polymerization process is 
continuously in development. Polypropylene is normally though and flexible, especially when 
copolymerized with ethylene. Perfectly isotactic polypropylene has a melting point in the range 
from 160°C to 166°C.The Melt Flow Rate (MFR) or Melt Flow Index (MFI) is a measure of 
molecular weight of polypropylene. The measure helps to determine how easily the molten raw 
material will flow through the processing.  As the MFI increases, some physical properties like 
strength will decrease. MFI and MFR polymer properties depend on the polymer production 
process and the level of control. One of the key properties to observe and control is a production 
rate. There are three general types of polypropylene: 
 

• homo-polymer 
• random copolymer 
• block copolymer 

 
The copolymer is usually used with ethylene. Ethylene-propylene rubber (EPDM) added to 
polypropylene homo-polymer increases its low temperature impact strength. Randomly 
polymerized ethylene monomer added to the polypropylene homo-polymer decreases the 
polymer crystalinity, lowers the Melting point and makes the polymer more transparent. 
Traditionally, three manufacturing processes are the most common ways to produce 
polypropylene.  
 

1. Hydrocarbon slurry or suspension 
2. Bulk (or bulk slurry) 
3. Gas phase 

 
Because of the high efficiency and complexity of the process, the gas phase production type is 
the most used in petrochemical plants [11]. Gas phase production process uses gaseous 
propylene in contact with the solid catalyst, resulting in a fluidized-bed medium. Due to non-
linearity in the process dynamics and difficulties involved in the control of the gas phase 
propylene polymerization fluidized bed reactor, an efficient process control scheme is vital for 
stable and efficient operation of the process. Linear MPC algorithms are unable to handle the 
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complexity of such non-linear process. The non
control and operation of the non-linear processes such as this polymerization process. Successful 
applications of Non-linear Model Predictive Control (NMPC) with capability of
unanticipated changes in process dynamics through the state estimator, on polymerization 
reactors have been reported. Summary of relevant studies in olefin polymerization and its control 
are listed and well summarized by [40]. Mostly implemen
UNIPOL. The Figure 3 shows an example of olefin polymerization process 
fluidized-bed polypropylene (UNIPOL
polypropylene reactor are 
 

• Reactor – fluidized bed gas phase polymerization reaction system
• Cycle gas compressor – continuous flow of cycle gas
• Cycle gas cooler – removes reaction heat

 
UNIPOL Polypropylene Technology is a simple and delicate processing system, comprising of 
one or two gas phase fluidized-bed reactors. To produce homo
a single reactor is used. In this work a single reactor is considered for 
reactor is a gas phase reaction system using Ziegler 
shown in Figure 4. The cycle gas supplies fresh propylene and fluidizes the reactor bed. 
 
Monomer (propylene), hydrogen, nitrogen 
stream to reactor. The cycle gas feed stream fluidizes and agitates at the same time as the reactor 
bed and removes heat generated by polymerization reaction.
 

Figure 3.  Simplified schematic of an indust

Polymerization occurs in the pores of Ziegler 
donor (selectivity control agent). The not reacted gas exits the top of
compressed and cooled before being fed back into the bottom of the fluidized bed. 
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linear process. The non-linear MPC has good capability to improve 
linear processes such as this polymerization process. Successful 

linear Model Predictive Control (NMPC) with capability of dealing with 
unanticipated changes in process dynamics through the state estimator, on polymerization 
reactors have been reported. Summary of relevant studies in olefin polymerization and its control 
are listed and well summarized by [40]. Mostly implemented polypropylene technology is 
UNIPOL. The Figure 3 shows an example of olefin polymerization process - industrial gas phase 

bed polypropylene (UNIPOL-type) reaction process. Main functional parts of UNIPOL 

luidized bed gas phase polymerization reaction system 
continuous flow of cycle gas 

removes reaction heat 

UNIPOL Polypropylene Technology is a simple and delicate processing system, comprising of 
bed reactors. To produce homo-polymers and random copolymers 

a single reactor is used. In this work a single reactor is considered for homo-polymerization. The 
reactor is a gas phase reaction system using Ziegler – Natta catalyst. Simplified block diagram is 
shown in Figure 4. The cycle gas supplies fresh propylene and fluidizes the reactor bed. 

Monomer (propylene), hydrogen, nitrogen and occasionally ethylene is provided by the gas 
stream to reactor. The cycle gas feed stream fluidizes and agitates at the same time as the reactor 
bed and removes heat generated by polymerization reaction. 

 
Figure 3.  Simplified schematic of an industrial gas-phase fluidized bed polypropylene reactor with model 

predictive control design  
 

Polymerization occurs in the pores of Ziegler - Natta catalyst and presence of co-catalyst and 
donor (selectivity control agent). The not reacted gas exits the top of the reactor and is then 
compressed and cooled before being fed back into the bottom of the fluidized bed.  
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linear MPC has good capability to improve 
linear processes such as this polymerization process. Successful 

dealing with 
unanticipated changes in process dynamics through the state estimator, on polymerization 
reactors have been reported. Summary of relevant studies in olefin polymerization and its control 

ted polypropylene technology is 
industrial gas phase 

Main functional parts of UNIPOL 

UNIPOL Polypropylene Technology is a simple and delicate processing system, comprising of 
polymers and random copolymers 

polymerization. The 
Natta catalyst. Simplified block diagram is 

shown in Figure 4. The cycle gas supplies fresh propylene and fluidizes the reactor bed.  

and occasionally ethylene is provided by the gas 
stream to reactor. The cycle gas feed stream fluidizes and agitates at the same time as the reactor 

 

phase fluidized bed polypropylene reactor with model 

catalyst and 
the reactor and is then 
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The polymer production rate in this system also depends on the heat removal from the cycle gas 
since the polymerization reaction is exothermic. To 
which is an important goal for this industry, it is necessary to keep the bed temperature above the 
dew point of the reactants to avoid the gas condensation and bellow the melting point of the 
polymer to prevent particle melting, agglomeration and resulting reactor shutdown. 
Polypropylene process stabilization is a challenging problem and an important task for the design 
of the control system of the process.
 

3. CASE STUDY 

 
Subjected polymerization reaction takes pl
shown in Figure 4. Prepared catalyst and purified reactants (
occasionally ethylene) are fed continuously to the reactor. Liquid Teal (
either donor (SCA - Selectivity Control Agent

catalysts. An externally cooled cycle gas loop fluidizes the reactor bed, provides fresh reactants, 
and removes heat from the exothermic polymerization reaction. The product flows int
from the reactor through two Product Discharge Systems (PDS), which operate in a sequentially 
alternating mode. The resin is transported to a receiving vessel by a dense phase conveying 
system. The reaction system consists of a reactor, a cycle
Gaseous reactants (a mixture of propylene, hydrogen, and occasionally ethylene) and inert gases 
are continuously recycled by the cycle gas compressor through the reactor bed with fluidized 
resin containing the catalyst. The heat of polymerization is transferred to the cycle gas and 
released in the external water-cooled cycle gas cooler.
 

Figure 4.  Principal diagram of the main process part of polypropylene reactor

The reactor is a skirt supported cylindrical 
disengagement. A perforated distributor plate supports the bed of granular resin and distributes 
the gas flow into the bottom of the bed. The cycle gas compressor is a single stage, constant 
speed, centrifugal compressor. The cycle gas circulation flow rate is controlled by discharge 
throttling and shovel angle of rectifier section of the compressor. The cycle gas cooler is a single
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The polymer production rate in this system also depends on the heat removal from the cycle gas 
since the polymerization reaction is exothermic. To achieve a stable polymer production rate, 
which is an important goal for this industry, it is necessary to keep the bed temperature above the 
dew point of the reactants to avoid the gas condensation and bellow the melting point of the 

rticle melting, agglomeration and resulting reactor shutdown. 
Polypropylene process stabilization is a challenging problem and an important task for the design 
of the control system of the process. 

Subjected polymerization reaction takes place in a fluidized-bed reactor and basic overview is 
shown in Figure 4. Prepared catalyst and purified reactants (propylene, hydrogen, and 

) are fed continuously to the reactor. Liquid Teal (tri-ethylaluminium

Selectivity Control Agent) are fed to the reactor inlet gas stream as co
catalysts. An externally cooled cycle gas loop fluidizes the reactor bed, provides fresh reactants, 
and removes heat from the exothermic polymerization reaction. The product flows int
from the reactor through two Product Discharge Systems (PDS), which operate in a sequentially 
alternating mode. The resin is transported to a receiving vessel by a dense phase conveying 
system. The reaction system consists of a reactor, a cycle gas cooler and a cycle gas compressor. 
Gaseous reactants (a mixture of propylene, hydrogen, and occasionally ethylene) and inert gases 
are continuously recycled by the cycle gas compressor through the reactor bed with fluidized 

st. The heat of polymerization is transferred to the cycle gas and 
cooled cycle gas cooler. 

Principal diagram of the main process part of polypropylene reactor  
 

The reactor is a skirt supported cylindrical vessel with a top expanded section for solids 
disengagement. A perforated distributor plate supports the bed of granular resin and distributes 
the gas flow into the bottom of the bed. The cycle gas compressor is a single stage, constant 

compressor. The cycle gas circulation flow rate is controlled by discharge 
throttling and shovel angle of rectifier section of the compressor. The cycle gas cooler is a single
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The polymer production rate in this system also depends on the heat removal from the cycle gas 
achieve a stable polymer production rate, 

which is an important goal for this industry, it is necessary to keep the bed temperature above the 
dew point of the reactants to avoid the gas condensation and bellow the melting point of the 

rticle melting, agglomeration and resulting reactor shutdown. 
Polypropylene process stabilization is a challenging problem and an important task for the design 

bed reactor and basic overview is 
propylene, hydrogen, and 

ethylaluminium) and 
) are fed to the reactor inlet gas stream as co-

catalysts. An externally cooled cycle gas loop fluidizes the reactor bed, provides fresh reactants, 
and removes heat from the exothermic polymerization reaction. The product flows intermittently 
from the reactor through two Product Discharge Systems (PDS), which operate in a sequentially 
alternating mode. The resin is transported to a receiving vessel by a dense phase conveying 

gas cooler and a cycle gas compressor. 
Gaseous reactants (a mixture of propylene, hydrogen, and occasionally ethylene) and inert gases 
are continuously recycled by the cycle gas compressor through the reactor bed with fluidized 

st. The heat of polymerization is transferred to the cycle gas and 

 
 

vessel with a top expanded section for solids 
disengagement. A perforated distributor plate supports the bed of granular resin and distributes 
the gas flow into the bottom of the bed. The cycle gas compressor is a single stage, constant 

compressor. The cycle gas circulation flow rate is controlled by discharge 
throttling and shovel angle of rectifier section of the compressor. The cycle gas cooler is a single-
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pass shell and tube heat exchanger. The cycle gas flows through the tubes and the cooling water 
flows counter-currently through the shell. The temperature is controlled by varying the cooling 
water makeup/return rate. 
 
Several simplifications have been considered during the analysis and design: 
 

1. Propylene or Nitrogen used for purging and conveying of catalyst/co-catalyst 
considered as negligible compared to the fresh propylene monomer feed. 

2. Single feed of already prepared catalyst slurry (catalyst mixed with mineral oil) 
considered instead of two standalone, stirred vessels with catalyst and mineral oil 
feeding systems. These two systems are never used both at the same time. 

3. Shell - tube cycle gas cooler make-up/fresh cooling water input system simplified to 
shell - tube exchanger with cooling water input and output with real flow and 
temperature values. Only temperature and flow of water considered in this work. 

4. Product discharge systems switching are not included because these are not related 
directly to the polymerization reaction process. Production rate data are downloaded 
from the control system used as output variable.  

 
Detailed study and analysis of UNIPOL process and technology units were necessary to 
understand the polypropylene production unit. Several legal steps were required for the proper 
protection of private property and author rights of license owner and technology operator. 
Consultancy with people responsible for the polypropylene process operation and maintenance 
was necessary for understanding of the process control and the operation. Polypropylene 
production unit is a complex plant consisting of different standalone units. Focusing only on 
polymerization reaction control, deep technology breakdown was required for the recognition of 
the process parts/units importance. Several partial tasks recognized during solution development 
and model identification: 
 

1. Analysis of recorded data and measured values 
2. Reactor model  
3. Comparison of data measured vs. data simulated 

 
Partial tasks, like catalyst vessels level, concentration and mixing control, are solved by lower-
level distributed control system (DCS). Because it is physically impossible to measure real 
amount of product on-line, mathematical model is used for the product production rate 
estimation. Model details are unknown and licensed by provider of technology. The main parts 
of the technology were chosen considering the priority and effect to the control of polypropylene 
reaction. The accuracy of different measurement instruments was recognized as important factor 
during analysis of downloaded data. As an example we can take a simple orifice flow meter 
which is used to measure the cycle gas flow. This flow meter measures the flow with the 
accuracy of approximately +/- 5% at nominal value of approximately 30000 m3/h approximately. 
 
3.1 Reactor model 

 
The neural network training appears unsuccessful using the complete set of data and standard 
training methods (the neural network toolbox in the Matlab using Levenberg - Marquardt 
training method). However, separating the data into different sets according to product type and 
using of combination of two training methods – scaled conjugate gradient and Levenberg - 
Marquardt, brings better results. The production unit is switching the production between 13 
different product types – polymers, sometimes on daily basis. Production rate prediction and 
control is one of the key performance indicators during the plant operation and provides set 
points to other control loops. 
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4. CONCLUSION 

 
In this work we focused mainly on a design and training of a reliable model for the prediction of 
the reactor production rate. This value is non-linear and difficult to measure on-line as the 
product is removed from the reactor not periodically and depending on many variables. 
 
Using the classic control methods often resulted into non-optimal set up of regulators and control 
system to achieve acceptable efficiency of the plant respecting the technology design limits. This 
approach frequently results into highly operator dependant control. In many cases, including the 
polypropylene unit described above, there are several constants which are adjusted by skilled 
operators to reach requested production target. Current high level control system is frequently 
switched off due to new procedures which are not included in current high level control system. 
 
Identified model is a Non-linear Autoregressive neural network with Exogenous Input (NARX) 
where !��� represents vector of input variables which can be obtained from the field sensors and 
valves and 9��� represents output value - reactor production rate. 
 
 9��� � L,!�� / 1�, !�� / 2�, 9�� / 1�- ( 14) 
 
NARX neural network model uses sigmoid activation function in the hidden layer and linear 
activation function in the output layer. Hidden layer of network has 30 neurons trained on 
process data. Performance of the model was evaluated using Mean Square Error method 
 
 NOPQ � #

�∑ �9� / 9S��5��+# � 0,0143  ( 15) 

,for � � 1,2, … ,58000 
 
and results are shown in Figure 5-13. 
 
The results show that the identification of such a non-linear process like polypropylene reaction 
using real process data is possible using neural networks.  
 
A system of reactor constraints needs further discussion with plant operations to achieve safe and 
reliable operation with maximum leverage of input materials and energy. The cycle gas flow 
variable and high/low pressure hydrogen flow signal we considered as main challenge for the 
identified neural network model because of high non-linearity. An appropriate filtration of 
measured data is necessary to achieve desirable results during the model identification. 
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Figure 5.  Time response of output variable obtained from open loop simulation  

 
 

Figure 6.  Time response of output variable obtained from open loop simulation  - detail view  
 

 
 

Figure 7.  Time response of output variable obtained from closed  loop simulation  
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Figure 8.  Time response of output variable obtained from closed  loop simulation - detail view  

 
Figure 9.  Time response of difference between output variable obtained from closed loop output and 

target values obtained from process  

 
Figure 10.  Time response of difference between output variable obtained from closed loop output and 

target values obtained from process - detail view  
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Figure 11.  Time response of output variable obtained from closed loop simulation - prediction of 15 steps 

compared to real values (starting  at step 9000)  

 
Figure 12.  Time response of output variable obtained from closed loop simulation - prediction of 15 steps 

compared to real values (starting  at 28000)  

 
Figure 13.  Time response of output variable obtained from closed loop simulation - prediction of 30 steps 

compared to real values (starting  at 37000) 
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