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ABSTRACT 
 
Inrecent years, high nonlinearities in the dynamics of financial markets have triggered a lot of research in 

financial engineering to try to deal with fluctuations and develop strategies to control the prices. 

Bifurcation analysis is a powerful mathematical tool used to deal with the nonlinear dynamics of any 

process. Several factors must be considered, and multiple objectives must be met simultaneously.  

Bifurcation analysis and multiobjective nonlinear model predictive control (MNLMPC) calculations are 

performed on two finance models. The MATLAB program MATCONT was used to perform the bifurcation 

analysis. The MNLMPC calculations were performed using the optimization language PYOMO   in 

conjunction with the state-of-the-art global optimization solvers IPOPT and  BARON.. The bifurcation 

analysis revealed Hopf bifurcation points branch and limit points in the two models. The Hopf bifurcation 

points were eliminated using an activation factor involving the tanh function. The branch and limit points 
were beneficial because they enabled the multiobjective nonlinear model predictive control calculations to 

converge to the Utopia point in both problems, which is the most beneficial solution. A combination of 

bifurcation analysis and multiobjective nonlinear model predictive control for financial engineering 

models is the main contribution of this paper.  
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1. BACKGROUND 
 

Ma and Chen (2001)[1] studied the topological structure and the global complicated character of 

a kind of nonlinear finance system. Ma et al (2008)[2]  demonstrated the existence of Hopf 
bifurcations in the financial system on condition of specific combination of parameters. 

Baur(2012)[3] discussed the connection between financial contagion and the real economy.  Chen 

et al (2013)[4]  studied the bifurcation and chaotic behavior of credit risk contagion based on the 
Fitzhugh-Nagumo system/ Koliai (2016)[5]  provided an EVT–pair-copulas approach for 

financial stress tests.  Xu et al (2016)[6] discussed the evolution mechanism of financial system 

risk.  

 
Huang and co-workers (2017,2018)[7,8] discussed control procedures for synchronization of 

financial systems. Gong et al (2019)[9] researched chaotic analysis and adaptive synchronization 

for a class of fractional-order financial systems.  Wen and Yang (2019) [10] discussed the 
complexity evolution of chaotic financial systems based on fractional calculus. Wen et al (2019) 

[11]  explored the dynamic effects of financial factors on oil prices based on a TVP-VAR model.  

Ma and  Li (2020)[12] conducted research on fractional differential equations in the dynamic 
analysis of a supply chain financial chaotic system.  Yang et al (2020)[13]  studied the cross-

market contagion of economic policy uncertainty and systemic financial risk. 
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 Luo et al (2021)[14] investigated the multiscale financial risk contagion between international 
stock markets. Akhtaruzzaman et al (2021)[15]  studied the financial contagion during the 

COVID–19 crisis. Shi et al (2022)[16] performed bifurcation analysis and control studies of a 

fractional-order delay financial system.  Wu and  Xia(2024)[17]  demonstrated the double-well 

stochastic resonance for a class of three-dimensional financial systems.  Zhang et al (2024)[18] 
discussed the stabilization of a 4D financial system with disturbance and uncertainty by the UDE-

based control method. Yan et al (2024) [19] used a type-3 fuzzy logic and Lyapunov approach for 

dynamic modeling and analysis of financial markets.  Stella et al (2024)[20]  provided a dynamic 
model to describe the cascading failures in the global financial system. Wei et al (2024) [21]  

discussed a procedure to control a new financial risk contagion dynamic model based on finite-

time disturbance.  
 

Some of this work involved bifurcation analysis and single-objective optimal control calculation. 

The main objective of this paper is to perform multiobjective nonlinear model predictive 

control(MNLMPC) in conjunction with bifurcation analysis for two dynamic financial 
engineering  models. The two models that will be used are those described in Wei et. al.  (2024 ) 

[28 ]and  Ma e et al (2008)[2]. This paper is organized as follows. First the model equations are 

presented.  The numerical procedures (bifurcation analysis and multiobjective nonlinear model 
predictive control(MNLMPC) are then described. This is followed by the results and discussion 

and conclusions.   

 

2. MODEL EQUATIONS  
 
For the first  model (Wei et. al.  (2024 ) [28 ])  the equations are  
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The parameter values are a=0.5b=2c=0.1d= 4.5 
 

xval represents the overall risk value of the system that is affected by both external and 

Internal shocks during the initial stage of any  phase,  yval, is  the total risk value of the system 
arising from contagion effects in the second stage of any  phase; andzval denotes the control 

value for system risk in the third stage of the phase.  

 
For the second model (Ma e et al (2008)[2]) 
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The parameter values are a=4;b=0.125;c=0.5.  
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Here xval represents the interest rate,   yval is the investment demand, and the price exponent is 

zval. In both models 1 2 3, ,u u u  represent the control parameters.  

 

3. NUMERICAL PROCEDURES  
 

3.1. Bifurcation Analysis  
 

The MATLAB software MATCONT is used to perform the bifurcation calculations. Bifurcation 
analysis deals with multiple steady-states and limit cycles.  Multiple steady states occur because 

of the existence of branch and limit points.  Hopf bifurcation points cause limit cycles .A  

commonly used MATLAB program that locates limit points,  branch points, and Hopf bifurcation 
points is MATCONT (Dhooge Govearts, and Kuznetsov, 2003[22]; Dhooge Govearts, 

Kuznetsov, Mestrom and   Riet,  2004[23] ).  This program  detects Limit points(LP),  

branchpoints(BP), and Hopf bifurcation points(H) for an  ODE  system  
 

( , )
dx

f x
dt

  (3) 

nx R  Let the bifurcation parameter be   Since the gradient is orthogonal to the tangent 

vector,   
 

The tangent plane at any point   1 2 3 4 1[ , , , ,.... ]nw w w w w w     must satisfy  

 

0Aw (4) 

 

Where  A is  
 

[ / | / ]A f x f       (5) 

 

where  /f x   is the Jacobian matrix.  For both limit and branch points, the matrix [ / ]f x    

must be singular.   The n+1 th component of the tangent vector 1nw   = 0 for a limit point 

(LP)and for a branch point (BP) the matrix 
T

A

w

 
 
 

 must be singular. At  a Hopf bifurcation point,  

 

det(2 ( , )@ ) 0x nf x I   (6) 

   

@ indicates the bialternate product while 
nI  is the n-square identity matrix. Hopf bifurcations 

cause limit cycles  and should be eliminated because limit cycles  make optimization and control 

tasks very difficult.  More details can be found in Kuznetsov ( 1998[24];  2009[25]) and Govaerts  
[2000] [26] 

 

3.2. Multiobjective Nonlinear Model Predictive Control(MNLMPC)  
 

Flores Tlacuahuaz et al (2012)[27] developed a  multiobjective nonlinear model predictive 

control (MNLMPC) method that  is rigorous and does not involve weighting functions or 
additional constraints. This procedure is used  for performing the MNLMPC  calculations  Here   
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ft  being the final time value, and n the total number of objective variables and .u  the control 

parameter.    This  MNLMPC procedure first solves the single objective optimal control problem 

independently optimizing each of the variables 
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This will provide the values of u  at  various times. The first obtained control value of u  
isimplemented and the rest are  discarded. This procedure is repeated until the implemented and 

the first obtained control values are the same or if the Utopia point  where ( 

0

*( )
i f

i

t t
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t
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
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  for 

all j)   is obtained.  
 

Pyomo (Hart et al, 2017)[28] is used for these calculations.  Here, the differential equations are  

converted to a Nonlinear Program (NLP) using the orthogonal collocation method   The NLP is 
solved using  IPOPT (Wächter And Biegler, 2006)[29]and confirmed as a global solution with 

BARON (Tawarmalani, M. and N. V. Sahinidis2005)[30].  

  
The steps of the algorithm are as follows  
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4. Repeat steps 1 to 3 until there is an insignificant difference between the implemented and 

the first obtained value of the control variables or if the Utopia point is achieved. The 

Utopia point is when 
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 Sridhar (2024a)[31] proved that the MNLMPC calculations to converge to the Utopia solution 
when the bifurcation analysis revealed the presence of limit and branch points . This was done by 

imposing the singularity condition on the co-state equation (Upreti, 2013)[32].   If the 

minimization  of   1q  lead to the value 
*

1q  and the minimization of 2q  lead to the value 
*

2q   The 

MNLPMC calculations will minimize the function 
* 2 * 2

1 1 2 2( ) ( )q q q q    .  The multiobjective  

optimal control problem is 
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Differentiating the objective function results in  

 
* 2 * 2 * * * *

1 1 2 2 1 1 1 1 2 2 2 2(( ) ( ) ) 2( ) ( ) 2( ) ( )
i i i

d d d
q q q q q q q q q q q q

dx dx dx
        

 (10) 

The Utopia point requires that both 
*

1 1( )q q  and 
*

2 2( )q q  are zero.  Hence  
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the optimal control co-state equation (Upreti;  2013) is  
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i  is the Lagrangian multiplier. ft  is the final time.  The first term in this equation is 0 and 

hence  
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d
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At a limit or a branch point, for the set of ODE ( , )
dx

f x u
dt

 xf  is singular. Hence there are two 

different vectors-values for [ ]i  where ( ) 0i

d

dt
   and ( ) 0i

d

dt
   . In between there is a vector 

[ ]i  where ( ) 0i

d

dt
   . This coupled with the boundary condition ( ) 0i ft   will lead to  

[ ] 0i   This makes the problem an unconstrained optimization problem, and the only solution is 

the Utopia solution.   

 

Hopf bifurcations cause unwanted oscillatory behavior and limit cycles. The tanh activation 

function (where a control value u is replaced by ) ( tanh / )u u    is commonly used in neural 

nets (Dubey et al 2022[33];  Kamalov et al, 2021[34] and Szandała, 2020[35] )and optimal 

control problems(Sridhar  2023[36] )  to eliminate spikes in the optimal control profile.  Hopf 
bifurcation points cause oscillatory behavior. Oscillations are similar to spikes, and the results in 

Sridhar(2024b)  demonstrate that the tanh factor also eliminates the Hopf bifurcation by 

preventing the occurrence of oscillations. Sridhar (2024b)[37] explained with several examples 

how the activation factor involving the tanh function successfully eliminates the limit cycle 
causing Hopf bifurcation points. This was because the tanh function increases the time period of 

the oscillatory behavior, which occurs in the form of a limit cycle caused by Hopf bifurcations.  
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4. RESULTS AND DISCUSSION  
 

In the first problem,  1 2 3, ,u u u  were individually used as bifurcation parameters. When 1u  was 

the bifurcation parameter, two Hopf bifurcation points, and one branch point were found at 

1( , , , )xval yval zval u  values of   ( 0.044 0.0206 0.936,  0.0027 );  ( 0.044 -0.0206 -0.936 0.0027 

) and   (0.044, 0.0,  0.0, 0.022 ). The bifurcation diagram is shown in Fig. 1a. The limit cycles for 

the two Hopf bifurcations are shown in Figures 1b and 1c. When the bifurcation parameter was 

modified to u1tanh(u1)/3800, the Hopf bifurcation disappears. This is shown in Fig. 1d.  
 

When 2u  was the bifurcation parameter, a Hopf bifurcation point and a limit point were found at  

2( , , , )xval yval zval u  values of  ( 0.037710 0.020384 0.924982 0.005887 ) and ( 0.014702 

0.012760 0.576079 0.017051 ) (Fig. 2a). The limit cycle produced by this Hopf bifurcation point 

is shown in Fig. 2b.  When the bifurcation parameter was modified to to u2tanh(u2)/0.005 the 
Hopf bifurcation point disappears. Still, the limit point occurs at ( 0.014702, 0.012760, 0.576090, 

0.009233 ). This is shown in Fig. 2c  

 

When 3u  was the bifurcation parameter, a Hopf bifurcation point was found at  

3( , , , )xval yval zval u  values of ( 0.0938 0.0469 1.0 0.11554 ) (Fig. 3a).A  limit cycle is caused 

by this Hopf bifurcation point (Fig. 3 b).   When the bifurcation parameter was modified to 

u3tanh(u3)/100 the Hopf bifurcation point disappears (Fig. 3c).  

When the MNLMPC calculations were performed    
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problem will involve the minimization of 
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was minimized subject to the equations governing the model. This led to a value of zero (the 

Utopia solution.  The first of the control variables is implemented, and the rest are discarded. The 

process is repeated until the difference between the first and second values of the control 

variables are the same. This MNLMPC control values of  1 2 3, ,u u u   obtained were (1.7435,  

2.252,  6.254). The various MNLMPC profiles are shown in Figs 4a and 4b. . The obtained 

control profile of s  exhibited noise (Fig.4 b).  This was remedied using the Savitzky-Golay Filter. 
The smoothed-out version of this profile is shown in Fig.4c.  

 

In the second problem,  1 2 3, ,u u u  were individually used as bifurcation parameters. When 1u  was 

the bifurcation parameter, a Hopf bifurcation point, and a limit point were found at 

1( , , , )xval yval zval u  values of (1.225987 4.024362 -2.451975 2.422107 )  and ( 0.763763 -

3.333332 -1.527525 7.128451 ) 

 

(Fig. 5a) The limit cycle generated by this Hopf bifurcation point is shown in Fig. 5 b.  When the 

bifurcation parameter was modified to u1tanh(u1)/0.1, the Hopf bifurcation disappears but two 
limit points are obtained at label  ( 0.763763 -3.333331 -1.527526 0.958583 )and  ( 0.763763 -

3.333331 -1.527526 -0.958583 ). This is shown in Fig. 5c. There were no bifurcations when 2u  

was the bifurcation parameter.  
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When 3u  was the bifurcation parameter, a Hopf bifurcation point and a limit point  was found at  

3( , , , )xval yval zval u  values of ( 1.225 4.024-0.0298 1.211 )and  ( 0.7637 -3.333 5.600 3.564 ).  

This is shown in Fig. 6a.  The Hopf bifurcation point generates a limit cycle that is shown in Fig. 
6b. When the bifurcation parameter was modified to  u3tanh(u3)/0.1  the Hopf bifurcation point 

disappears (Fig. 6c). The limit point still occurs at ( 0.763-3.33 5.60 0.634 ) (Fig. 6c).  

 

When the MNLMPC calculations were performed    
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were  minimized individually  each leading to a value of 0  and the overall optimal control 

problem will involve the minimization of 
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was minimized subject to the equations governing the model. This led to a value of zero (the 

Utopia solution.  The first of the control variables is implemented, and the rest are discarded. The 
process is repeated until the difference between the first and second values of the control 

variables is the same. This MNLMPC control values of  1 2 3, ,u u u   obtained were (3.03669  

6.94238  4.02158). The various MNLMPC profiles are shown in Figs 7a and 7b. . The obtained 
control profile of s  exhibited noise (Fig. 7b).  This was remedied using the Savitzky-Golay Filter. 

The smoothed-out version of this profile is shown in Fig.7c.  

 
In both cases, the MNLMPC calculations converged to the Utopia solution, Sridhar (2024a)[31], 

which showed that the presence of a limit or branch point enables the MNLMPC calculations to 

reach the best possible (Utopia) solution. Both problems exhibited limit cycles causing Hopf 

bifurcation points, which were successfully eliminated using an activation factor involving the 
tanh function, confirming the analysis of Sridhar (2024b)[37]. Sridhar(2024b)[37]  explained 

with several examples how the activation factor involving the tanh function successfully 

eliminates the limit cycle causing Hopf bifurcation points by increasing the period of the 
oscillatory behavior, which occurs in the form of a limit cycle. 

 

5. CONCLUSIONS  
 

Multiobjective nonlinear model predictive control calculations were performed along with 
bifurcation analysis on two dynamic financial engineering models.   The bifurcation analysis 

revealed the existence of Hopf bifurcation points, limit points, and branch points.  The Hopf 

bifurcation points cause unwanted limit cycles and were eliminated using a tanh activation factor. 
The limit and branch points (which produced multiple steady-state solutions originating from a 

singular point)  are very beneficial as they caused the multiojective nonlinear model predictive 

calculations to converge to the Utopia point( the best possible solution) in both models.  A 

combination of bifurcation analysis and multiobjective nonlinear model predictive control for 
financial engineering models is the main contribution of this paper.  
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