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ABSTRACT 
 
Understanding the dynamics of Circadian rhythms that regulate several physiological processes in human 

beings is important. Many Circadian rhythm models involve time delay functions as the rhythmic processes 

are initiated at different times. The main objectives of this paper are to perform bifurcation analysis and 

multi objective nonlinear model predictive control (MNLMPC) of the delayed differential equations (DDE) 

of a three-dimensional Circadian rhythm model.  The bifurcation analysis reveals several intermediate 

oscillations causing Hopf bifurcations which are eliminated using an activation factor. The multi objective 

nonlinear model predictive control reveals a control profile with a lot of noise that is eliminated using the 

Savitsky Golay filter. Bifurcation analysis was performed using the MATLAB software DDEB if tool. Multi-

objective nonlinear model predictive control was performed with the optimization language PYOMO. 
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1. INTRODUCTION 
 

Decoursey [1] discussed an ecologist's viewpoint of photoentrainment of circadian rhythms, 

while Aronson et al [2] discussed the negative feedback defining a circadian clock focusing on 

the autoregulation of the clock gene frequency. Edery, et al [3] researched the temporal 

phosphorylation of the Drosophila period protein.  Crosthwaite, and co-workers [4,5] researched  

resetting of circadian clocks and the origins of circadian rhythmicity.  Hunter-Ensor [6] 

concluded that the regulation of the Drosophila protein timeless suggests a mechanism for 

resetting the circadian clock by light. Shigeyoshi et al [7] showed that a Light-induced resetting 

of a mammalian circadian clock is associated with rapid induction of the mPer transcript. Mackey 

[8] discussed the various mathematical models of hematopoietic cell replication and control. 

Merrow, et al [9] dissected circadian oscillation into several discrete domains.   Albrecht et al 

[10] studied the differential response of two putative mammalian circadian regulators, mPer1 and 

mPer2, to light.  Details of the cyanobacterial circadian system were presented by Golden et al 

[11]. Ishiura et al [12] developed an expression of a gene cluster kai ABC as a circadian feedback 

process in cyanobacteria.   Jewett, and Kronauer [13] modeled effects of light on the human 

circadian pacemaker. Gekakis et al [14] discussed the role of the clock protein in the mammalian 

circadian mechanism. Nunes [15] developed a double circadian oscillator model for quantitative 

photoperiodic time measurement in insects and mites.  Sangoram et al [16] showed how a 

timeless ortholog and mPer1 interact and negatively regulate clock-bmal1-- induced transcription. 

Leloup and Goldbeter [17] developed a model for circadian rhythms in Drosophila incorporating 

the formation of a complex between per and tim proteins. Darlington and co-workers [18] 

discussed the closing of the circadian loop and the clock-induced transcription of its own 
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inhibitors per and Tim.   Jin et al [19] developed a molecular mechanism regulating output from 

the suprachiasmatic circadian clock. Lee et al [20] developed a strategy to reset the Drosophila 

clock by photic regulation of PER and a PER-TIM complex. Scheper and co-workers (21, 22) 

performed interesting modeling work involving Circadian rhythms.  Blasius et al [23] developed 

an oscillatory model of crassulacean acid metabolism with a dynamic hysteresis switch. Dunlap 

[24] investigated the molecular bases for circadian clocks.   Lema et al [25] developed a delayed 

model of the circadian pacemaker. Van Soest et al [26] developed a three-dimensional model 

involving three delay differential equations of the circadian clock. 

  

2. OBJECTIVES 
 

The main objectives of this paper are to perform bifurcation analysis and multiobjective nonlinear 

model predictive control (MNLMPC) of the delayed differential equations (DDE)  of the three-

dimensional model developed by  Van Soest et al [26]. The bifurcation analysis reveals several 

intermediate oscillations causing Hopf bifurcations which are eliminated using an activation 

factor. The multiobjective nonlinear model predictive control reveals a control profile with a lot 

of noise that is eliminated using the Savitsky Golay filter.  This paper is organized as follows. 

First, the three DDE model involving Circadian rhythms are presented. The bifurcation analysis 

and the MNLMPC procedures are then described followed by the discussion of the results 

obtained and the conclusions.  

 

3. THE THREE DDE CIRCADIAN MODEL 
 

This model is transcription-based, displaying two negative feedback loops described in three 

delay differential equations (DDEs). B,  P, and R  represent the core clock genes BMAL1, PER, 

and REVERB. BMAL1 (B)  drives the expression of clock genes and should be maximized. 

REVERB activates BMAL1 but also produces PER which inhibits BMAL1. PER the inhibitor of 

BMAL1 should be minimized. 

  

The equations representing this model are  
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The parameter values are  

 

   0.0014 ,    0.29 ,    1,    0.9,    0.6,

  0.1,    0.05,    0.9,    0.1,    35,    1,    8

db dr vp vb vr
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dp  is the bifurcation parameter and the control value.  

 

The time delay   is equal to 3. 
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4. BIFURCATION ANALYSIS OF DELAY DIFFERENTIAL EQUATIONS  
 

DDE-BIFTOOL is a MATLAB package that performs a bifurcation analysis of delay differential 

equations with several delays where the continuation of steady-state solutions is implemented.  

Fold points and Hopf bifurcation points that result in periodic solutions are determined.  The 

periodic solutions are computed using orthogonal collocation with adaptive mesh selection. The 

DDE-BIFTOOL package encourages the use of time delays in modeling. More details can be 

found in Engelborghs et al [27]. 

  

5. MULTIOBJECTIVE NONLINEAR MODEL PREDICTIVE CONTROL 

ALGORITHM 
 

The Multiobjective Nonlinear Model Predictive Control method used is similar to the one used 

by Flores Tlacuahuaz [28] For a a set of delay differential equations  

                                      ( ( ), )
dx

F x t u
dt

                 (2) 

For a final time of  ft  let ( ) 1,2,..j fp t j n  be the variables that need to be optimized 

(maximized or minimized). Simultaneously.  n the total number of variables that need to be 

optimized simultaneously.   In this  MNLMPC method dynamic optimization problems  that 

independently minimize/maximize  each variable ( ) 1,2,..j fp t j n    are solved individually.  

The individual minimization/maximization of each ( ) 1,2,..j fp t j n  will lead to the values 

*

jp   .  Then the   multiobjective  optimal control problem that will be solved is  
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This will provide the control values for various times. The first obtained control value is 

implemented and the rest are ignored.  The procedure is repeated until the implemented and the 

first obtained control values are the same or if the Utopia point ( *( )j f jp t p ;  for all j from 1 to 

n  is achieved. The optimization package in Python, Pyomo (Hart et al [29]), where the 

differential equations are automatically converted to algebraic equations will be used. The 

resulting optimization problem was solved using IPOPT (Wächter And Biegler [30]).  The 

obtained solution is confirmed as a global solution with BARON (Tawarmalani, M. and N. V. 

Sahinidis[31]).  Pyomo can handle functions with time. For example, if xdelay is  the value of x 

at the time tau ( where tau is the delay) the corresponding code would read: 

  

def _msa1(m,t): 

if ( t  - m.tau).in m.t: 

return m.xdelayed[t] == m.x[t - m.delayp] 

else: 

return  Constraint.Skip 

m.msa1con= Constraint(m.t,rule=_msa1) 

def _msb1(m,t): 

    if t < m.tau: 

        return m xdelay[t]==0 

    else: 
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        return Constraint.Skip 

m.msb1con= Constraint(m.t,rule=_msb1)  

 

The value of xdelay is 0 when the time is less than tau and is equal  to x(t-tau) when t is greater 

than or equal to tau. 

   

6. RESULTS AND DISCUSSION  
 

The DDEbiftool package has revealed three bifurcation points at [P,B,R] values of (1,2307,0, 

0.9219); (0.73581, 0, 0.95989) and (0.59088, 0 0.91766). The values of dp at these Hopf 

bifurcation points are 0.45884, 1.9455, and   3.5457. These Hopf bifurcation points are indicated 

in Fig. 1  The limit cycles caused by the three Hopf bifurcation points are shown in Figures 2 3 

and 4.  The limit cycles caused by the Hopf bifurcations disrupt the Circadian rhythm and should 

be eliminated. Sridhar (2024) explained with several examples how the activation factor 

involving the tanh function successfully eliminates the limit cycle causing Hopf bifurcation 

points. This is found to be true in the three DDE circadian model. When dp was replaced by 

dptanh(dp)/20 the three Hopf bifurcation points disappeared. This is demonstrated in Fig. 5. 

    

For the MNLMPC ( )fP t  was minimized and ( )fB t  was maximized. The minimization of

( )fP t  resulted in a value of 0.591 and the maximization of ( )fB t  yielded a value of 105.233. 

The function that was then minimized was 
2 2

( ) 0.591 ( ) 105.233
[( ) ( ) ]

0.591 105.233

f fP t B t 
  . The first  

obtained control values of dp was implemented and the remaining values were discarded.  This 

procedure was repeated until there was no difference between the implemented and the first 

obtained dp values. This  MNLMPC value of dp that was obtained was 0.2509. The B, P R 

profiles are shown in Fig. 6.  This figure demonstrates the haphazard nature of the REVERB(R). 

This is because REVERB(R) activates BMAL1 but also produces PER which inhibits BMAL1. The 

obtained control profile of dp exhibited a lot of noise (fig.7).  This was remedied using the 

Savitzky-Golay Filter. The Savitzky-Golay filter,  is a digital filter widely used for data 

smoothing and differentiation.  The Savitzky-Golay filter maintains the integrity of the original 

signal preserving the shape and features of the signal. The smoothed-out version of this profile is 

shown in Fig. 8. 

 

CONCLUSIONS  
 

Bifurcation analysis and Multiobjective nonlinear model control were performed on the 

mammalian circadian clock  that involves three delay differential equations. The bifurcation 

analysis revealed the existence of intermediate Hopf bifurcations which were eliminated using 

the hyperbolic tangent activation function. The multiobjective nonlinear model caculation 

revealed a control profile with a lot of noise that was eliminated using the Savitzky Golay filter.  
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Fig. 1 Bifurcation diagram dp versus P showing three Hopf bifurcation points 
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Fig. 2 Limit Cycle for the first Hopf bifurcation Point 

  

 
 

Fig. 3 Limit Cycle for the second Hopf bifurcation Point  
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Fig.4  Limit Cycle for the third   Hopf bifurcation Point  

 

 
 

Fig. 5 Hopf Bifurcation points disappear when  dp is modified to dpTanh(p)/20 
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Fig. 6 The MNLMPC profiles of B P and R 

 

 
 

Fig. 7 dp versus R for   MNLMPC calculations indicating “noise” 
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Fig. 8  dp versus R for   MNLMPC calculations noise removed with Savitsky Golay Filter 


