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ABSTRACT 
 

The Circadian rhythm regulates several physiological processes in human beings. Hence it is important to 
understand its dynamics and regulate them. There are several dynamic models describing the Circadian 

rhythms. One of the most commonly used modes is the  Jewett-Forger-Kronauer (JFK)  model. Several 

researchers have reported the existence of limit cycles and conducted single-objective optimization studies 

for the Jewett-Forger-Kronauer  (JFK)  model that describes Circadian rhythms.  In this work, a ) it is 

shown that the limit cycles occur because of Hopf bifurcation points b)  a computational strategy to 

eliminate the Hopf bifurcations that cause these limit cycles is provided and c) Multiobjective nonlinear 

model predictive control calculations are performed, for the Circadian rhythms  Jewett-Forger-Kronauer  

(JFK)  model. Bifurcation analysis was performed with MATCONT ( a MATLAB software) while the Multi-

objective nonlinear model predictive control was performed with the optimization language PYOMO (a 

Python software). 
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1. INTRODUCTION 
 

The circadian rhythm functions as a clock that regulates many physiological processes in human 

beings and it is important to understand the dynamics of the Circadian rhythms.  Several 
researchers have reported the existence of limit cycles in Circadian rhythms and conducted 

dynamic optimization studies on models describing circadian rhythms. In this paper bifurcation 

analysis and Multiobjective nonlinear model predictive control calculations are performed on the   
Jewett-Forger-Kronauer (JFK)  model for circadian rhythms. 

 

2. BACKGROUND 
 

Aschoff (1965) studies the Circadian rhythms in man. Jewett (1991) investigated light-induced 
suppression of endogenous circadian amplitude in humans. Forger et al (1999, 2002) developed 

models of biological clocks Leloup and Goldbeter (1998,2003) developed models for circadian 

rhythms in Drosophila. Doyle et al (2006)  showed that the circadian rhythm is a natural, robust, 
multi-scale control system. Rea et al (2008) developed an approach to understanding the impact 

of circadian disruption on human health. Taylor et al (2008) discussed sensitivity measures for 

oscillating systems: application to mammalian circadian gene network. Baggs et al (2009) studied 

the network features of the mammalian circadian clock Mott( 2003), Bagheri and co-workers 
(2007, 2008) Zhang and co-workers (2012, 2013, 2016) . Serkh et al (2014)     Abel et al (2016), 

Qiao (2017), Julius et al (2017), and performed optimization and control studies of circadian 

dynamics.  Abel et al (2019) performed nonlinear model predictive control calculations for 
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populations of circadian oscillators.  Yin et al (2019) investigated circadian entrainment in 

models of circadian gene regulation. Julius et al (2019) performed time-optimal entrainment 
control calculations for circadian rhythms using the Jewett-Forger-Kronauer (JFK)   model. 

  

3. MOTIVATION AND OBJECTIVES  
 

The limit cycles occur because of the existence of Hopf bifurcation points. These limit cycles are 
undesirable as they interrupt the Circadian rhythm and hinder optimization and control tasks. 

Hence they should be eliminated.   This is possible by the elimination of the Hopf bifurcation 

points.  The first objective of this work is to perform a bifurcation analysis on the Circadian 
rhythm dynamic model,  identify the various singular points,  and eliminate the Hopf bifurcation 

point.  

All optimal control tasks for problems for problems involving circadian rhythms involve single 

objective optimal control. In this work, Multiobjective nonlinear model predictive 
control(MNLMPC) calculations are performed on the   Jewett-Forger-Kronauer (JFK)  model for 

circadian rhythms and the interaction between the Bifurcation analysis and MNLMPC is 

investigated.  The paper is organized as follows. First, the Jewett-Forger-Kronauer (JFK)  model 
for circadian rhythms is discussed, followed by the bifurcation analysis, the MNLMPC strategy, 

and the interaction between the bifurcation analysis and MNLMPC.. The results and discussion 

are then presented followed by the conclusions. 

  

4. THE JEWETT-FORGER-KRONAUER (JFK)  MODEL FOR CIRCADIAN 

RHYTHMS 
 

In the the Jewett-Forger-Kronauer (JFK) model (Julius et al (2019)),  1( ), 2( )xval t xval t  

represent the states of the oscillator.  The signal u(t) is the input to the circadian oscillator which 

is utilized as a bifurcation parameter and control variable. ( )n t  is the state of the process that 

represents retinal photoreceptor saturation. I is the intensity of the light input that enters the 

receptor. The parameter values are 
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The value of I is 1000 Lux. The model equations are  
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5. BIFURCATION ANALYSIS  
 

Multiple steady-states and oscillatory behavior occur  in various situations.  Multiple steady 

states occur because of t Branch and Limit bifurcation points cause multiple steady-states.  Hopf 
bifurcation points produce oscillatory behavior. Ions and limit cycles.  The MATLAB program 

MATCONT . (Dhooge Govearts, and Kuznetsov, 2003; Dhooge Govearts, Kuznetsov, Mestrom 

and   Riet,  2004 ).    is commonly used software to locate limit points, branch points, and Hopf 
bifurcation points. Consider an  ODE  system  

 

( , )x f x                       (2) 

 nx R  . Defining  the matrix A as  
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  is the bifurcation parameter. The matrix A can be written in a compact form as  

 

[ | / ]A B f                                (4) 

 

The tangent at any point x;    ( 1 2 3 4 1[ , , , ,.... ]nv v v v v v  ) must satisfy 

  

0Av                                         (5) 

 
 

The matrix B must be singular at  both limit and branch points..  The n+1 th component of the  

 

tangent vector 1nv   = 0  at a limit point (LP) and for a branch point (BP) the matrix 
T

A

v

 
 
 

 must 

 

be singular. At a Hopf bifurcation,  

 

det(2 ( , )@ ) 0x nf x I                                (6) 

   

@ indicates the bialternate product while 
nI  is the n-square identity matrix. Hopf bifurcations 

cause unwanted oscillatory behavior and should be eliminated because oscillations make 

optimization and control tasks very difficult.  More details can be found in Kuznetsov ( 1998;  
2009) and Govaerts  [2000] . 
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6. MULTIOBJECTIVE NONLINEAR MODEL PREDICTIVE CONTROL 

ALGORITHM 
 

Flores Tlacuahuaz(2012) first proposed the Multiobjective nonlinear model predictive control 
method. that does not involve weighting functions, nor does it impose additional constraints on 

the problem unlike the weighted function or the epsilon correction method(Miettinen, 1999). For 

a a set of ODE  
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 (j=12..n); be  the variables that need to be minimized/maximized simultaneously,  

 

ft  being the final time value, and n the total number of variables that need to be optimized 

simultaneously.   In this  MNLMPC method dynamic optimization problems  that independently  
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This will provide the control values for various times. The first obtained control value is 

implemented and the rest are ignored.  The procedure is repeated until the implemented and the  
 

first obtained control values are the same or if the Utopia point ( 

0

*( )
i f

i

t t

j i j

t

p t p




 ;  for all j) is  

 

achieved. The optimization package in Python, Pyomo (Hart et al, 2017), where the differential 
equations are automatically converted to algebraic equations will be used. The resulting 

optimization problem was solved using IPOPT (Wächter And Biegler, 2006).  The obtained 

solution is  confirmed as a global solution with BARON (Tawarmalani, M. and N. V. Sahinidis 
2005).  To summarize the steps of the algorithm are as follows   
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1. Minimize/maximize 

0
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 . This will lead to the value 
*

jp  at various time intervals ti. 

The subscript i is the index for each time step.   

2. Minimize 
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   . This will provide the control values for various times. 

3. Implement the first obtained control values and discard the remaining. 

4. The steps are repeated until there is an insignificant difference between the implemented 
and the first obtained value of the control variables or if the Utopia point is achieved.  

  

7. INTERACTION BETWEEN BIFURCATION AND MNLMPC 
 
A recently published article by Sridhar(2024a) demonstrated that when MNLMPC calculations 

were performed on problems that exhibited Limit and Branch points the Utopia point was always 

obtained. This was done by incorporating the singularity condition (because of the limit and 

branch points) on the co-state equation for the optimal control problem. Details can be found in 
Sridhar(2024a).   

 

The tanh activation function (where a control value u is replaced by ) ( tanh / )u u    is 

commonly used in neural nets (Dubey et al 2022;  Kamalov et al, 2021 and Szandała, 2020 ) and 
optimal control problems(Sridhar  2023 )  to eliminate spikes in the optimal control profile. The 

tanh factor effectively eliminates spikes that occur in control profiles. Hopf bifurcation points 

cause oscillatory behavior. Oscillations are similar to spikes and the results demonstrate that the 

tanh factor also eliminates the Hopf bifurcation by preventing the occurrence of oscillations. 
Sridhar (2024b) explained with several examples how the activation factor involving the tanh 

function successfully eliminates the limit cycle causing Hopf bifurcation points. 

 

8. RESULTS AND DISCUSSION  
 

The bifurcation analysis revealed the existence of a limit point and a Hopf bifurcation point at 

(xval1, xval2, nval, u) values of ( -0.878498 -1.519704 0.992556 0.712093) and ( -0.742556 -

1.292880 0.992556 0.689392 ) respectively. This is shown in Fig. 1. Fig. 2  shows the Limit 
Cycle that occurs because of the  Hopf Bifurcation point. For eliminating the Hopf bifurcation 

point, u was replaced by u(tanh (u)/7).  As a result, the Hof bifurcation point is eliminated (Fig. 

3)  The Hopf bifurcation point in the Circadian rhythm problem is eliminated by the tanh 
activation factor further justifying the conclusion arrived at by Sridhar(2024b). 

   

For the MNLMPC calculations without the tanh activation factor,(

0 0

( 1( )) ( 2( ))
i f i f

i i

t t t t

i i

t t

xval t xval t
 

 

   ) and 

0

( ( ))
i f

i

t t

i

t

nval t




  are minimized individually. No activation  

 
factor was used.  The objective values obtained were  -7.3483513935981613 and 0.9919742.  

For the multiobjecitve optimization  calculations without the activation function, 
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was minimized. The objective function value obtained was 0, implying that the Utopia point is 

achieved.  The resulting MNLMPC control value obtained was 1.3496246229247468 
. For the MNLMPC calculations with the tanh activation factor,  

(
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  are minimized individually. u was  

 

replaced by( utanh (u)/7)  ,The objective values obtained were  --6.9661843525677547and - 

1.0091977500402809. 
  

 For the multiobjecitve optimization calculations with the activation function, 
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was minimized. The objective function value obtained was 0, implying that the Utopia point is 

achieved.  The resulting MNLMPC control value obtained was 0.01531203269734607 For the 

Jewett-Forger- Kronauer (JFK) model describing circadian rhythms, the presence of the limit 
point causes the MNLMPC calculations to converge to the Utopia point validating the conclusion 

of Sridhar (2024a). Figures 4 and 5 show the variables and control profiles when no activation 

factor was used.  Figures 6 and 7 show the same profiles when u was replaced but u(tanh(u))/7. A 
comparison of Figures 5 and 7 shows that using the activation factor eliminates the spikes in the 

control profile. 

  

The bifurcation calculations are performed with MATCONT and PYOMO is used for the 
MNLMPC calculations following the procedures described in the earlier sections.  The time 

period is 24 hours.  

 

9. CONCLUSIONS AND FUTURE WORK 
 

The results in this work indicate that the limit cycles in the Jewett-Forger- Kronauer (JFK)  

model for circadian rhythms are caused by the existence of the presence of Hopf bifurcation 

points which can be eliminated by the use of an activation factor involving the tanh function. This 
activation factor also eliminates the spikes in the control profiles when Multi objective nonlinear 

model predictive control calculations are performed. The Bifurcation analysis also exhibited a 

limit point, enabling the Multi objective nonlinear model predictive control calculations to 
converge to the Utopia solution.  Future work will involve the performance of a combination of 

bifurcation analysis and Multi objective nonlinear model predictive control calculations on more 

advanced Circadian rhythm models.  
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Fig. 1 Hopf Bifurcation and limit point without tanh activation factor 
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Fig. 2 Limit Cycle as a result of the  Hopf Bifurcation point 

 

 

 
 

Fig. 3 Fig. 1 Hopf Bifurcation and limit point disappears with tanh activation factor 

 

 
 

Fig. 4  xval1 xval2 and nval profiles without activation factor 
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Fig. 5  u (control value) profile without activation factor 

 

 

 
 

Fig. 6  xval1 xval2 and nval profiles with tanh activation factor 

 

 
 

Fig. 7   u (control value) profile without activation factor 


