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ABSTRACT 
 

A drift-flux model is utilized to theoretically analyze the boundary layer flow and heat transfer of a 

nanofluid over a flat plate. The concentration of nanoparticles at the plate is obtained using the solution of 

the governing equations. Assuming a fixed magnitude of free stream velocity, the results show that the heat 

transfer may enhance up to 22% or decrease about -7% by using nanofluids compared to the pure base 

fluid.  
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1. INTRODUCTION 
 
The nanofluids are new-engineered fluids with enhanced thermo-physical properties. Nanofluids 

are produced by suspending nanoparticles in a conventional base fluid. The experimental 

measurements of nanofluids indicate augmentation of the thermal conductivity and viscosity of 

nanofluids even with small volume fraction of nanoparticles [1-3]. Therefore, the addition of 

small amount of nanoparticles to a conventional heat transfer fluids may significantly enhance the 

convective heat transfer of the host fluid. An excellent review of the practical applications of 

nanofluids can be found in a recent review by Saidur et al. [4]. 
 

An increase of the volume fraction of nanoparticles would increase the thermal conductivity of 

nanofluids, which is expected to enhance the convective heat transfer of nanofluid in comparison 

with the base fluid. However, the addition of nanoparticles in the base fluid would also affect the 

other thermo-physical properties such as dynamic viscosity, density and heat capacity of the base 

fluid. Therefore, the addition of nanoparticles may enhance the heat transfer coefficient of 

nanofluid even further than the enhancement in the thermal conductivity, or sometimes it may 

decrease the heat transfer coefficient to values less than the heat transfer coefficient of the base 

fluid. The previous studies [5-7] show that the concentration of nanoparticles in the base fluid 

may not remain constant, and the nanoparticles may have a slip velocity relative to the base fluid. 

The slip of nanoparticles can transfer energy and affect the local thermo-physical properties of the 

nanofluid [6, 8].  
 

Currently, there are two general approaches to analyze the convective heat transfer of nanofluids. 

In the first approach, the nanofluid is considered as a homogenous mixture of the nanoparticles 

and the base fluid [8-10]. Hence, the nanofluid is a single-phase fluid with enhanced thermo-

physical properties, and hence, the conventional governing equations of momentum and energy 

can be utilized to analyze the flow and heat transfer of nanofluids.  
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In the second approach, the nanofluid may not remain homogenous and the nanoparticles may 

have slip velocity relative to the base fluid. Using scale analyze, Buongiorno [6] have examined 

the forces, which may act on the nanoparticles in the base fluid. The results show that the 

Brownian motion and thermophoresis are the main important forces causing the drift flux (slip 

velocity) of nanoparticles in the base fluid [11-18].  
 

Using a homogeneous model of nanofluid, Bachok et al. [9] have analyzed the boundary layer 

flow and heat transfer of nanofluids over a flat plate. They performed a case study for the Cu, 

Al2O3 and TiO2 nanoparticles dispersed in the water. They utilized the Maxwell model [19] for 

evaluation of thermal conductivity of the nanofluids. They [9] adopted the Brinkman model [20] 

to evaluate the viscosity of the nanofluids. As the Maxwell and Brinkman models are independent 

of the size of nanoparticles, the effect of the size of nanoparticles on the boundary layer was not 

examined in the study of Bachok et al. [9]. Bachok et al. [9] were adopted the reduced Nusselt 

number (Nux/Rex
1/2

=-knf θ´(0)/kf) as the important heat transfer parameter. As seen, the reduced 

Nusselt number is a function of the ratio of thermal conductivity of the nanofluid and the base 

fluid. In the previous studies [8-11, 11-18], the Reynolds number is assumed to be fixed for both 

of the base fluid flow and nanofluid. However, the viscosity of nanofluid is a function of 

nanoparticles volume fraction. Hence, a constant free stream velocity is a more practical situation 

for analysis of the heat transfer of nanofluids in comparison with base fluid (rather than assuming 

a constant Reynolds number).  
 

Bachok et al. [5] have examined the boundary layer flow and heat transfer of nanofluids over an 

isothermal flat plate using a non-homogeneous model. They considered a slip velocity for 

nanoparticles relative to the base fluid because of the Brownian motion and thermophoresis 

forces. They [5] assumed that the concentration of nanoparticles is actively controlled to be 

constant on the surface. In the work of Bachok et al. [5], the governing equations are a function of 

Prandtl number, Lewis number, Brownian motion parameter and thermophoresis parameter. The 

reduced Nusselt number was introduced as the heat transfer parameter, and the results were 

reported for this parameter. However, in the non-homogenous model, the variation of reduced 

Nusselt number (Nur=Rex
1/2 ×hnf x / knf) cannot adequately show the heat transfer enhancement of 

nanofluid in comparison with the base fluid. The presence of nanoparticles simultaneously affects 

the surface heat transfer coefficient (hnf) and increases the thermal conductivity of the nanofluid 

(knf). Hence, the reduced Nusselt number may decrease; however, the heat transfer coefficient 

may increase.  
 

In the previous works [5, 7-18], the effect of local volume fraction of nanoparticles on the thermal 

conductivity and viscosity of nanofluids was neglected. However, the experimental measurement 

of the thermo-physical properties of nanofluids shows that the thermal conductivity and viscosity 

of nanofluids strongly depends on the volume fraction of nanoparticles [2, 21]. Therefore, in the 

present study, the thermal conductivity and viscosity of nanofluid are considered as a function of 

local volume fraction of nanoparticles. 
 

In the previous studies [7, 11-18], which have utilized the non-homogeneous model of nanofluids, 

the volume fraction of nanoparticles at the wall was assumed to be actively controlled in the 

concentrations higher than the concentration of the free stream, but no identification was given 

how the surface can actively control the volume fraction of nanoparticles. Hence, in the present 

study, the zero flux of nanoparticles at the plate, which is a more realistic boundary condition, is 

adopted. Consequently, the volume fraction of nanoparticles at the surface of the plate is 

evaluated using the solution of the governing equations.  
 

In practice, the engineers need to know the convective enhancement of using nanofluids in 

comparison with the base fluid. However, the measurement of the thermophysical properties of 

nanofluids could not adequately indicate the convective heat transfer enhancement of nanofluids. 

For example, a scientist may synthesized a new nanofluid, using a nanopowder or a chemical 
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method, for heat transfer applications and then measure the thermophysical properties of the 

nanofluid. The measurement results typically indicate enhancement in the thermal conductivity as 

well as the dynamic viscosity. It is clear that the increase of the thermal conductivity enhances the 

convective heat transfer, but the increase of dynamic viscosity tends to slow the flow and 

decrease the convective heat transfer. The other thermophysical properties (such as density and 

heat capacity) and the mass transfer mechanism (due to Brownian motion and thermophoresis) 

would also affect the convective heat of nanofluids. Now the question is that does the nanofluid 

enhance the convective heat transfer compared to the base fluid? Thus, a general non-dimensional 

analysis of the convective heat transfer for nanofluids, incorporating the effective parameters, is 

highly demanded to reveal the real convective enhancement of nanofluids.  
 

In the present study the geometry of the flat plate has been adopted a typical geometry for the 

study of the external forced convection flows. The thermal conductivity and dynamic viscosity of 

nanofluid are considered as a function of local volume fraction of nanoparticles. The zero particle 

flux from the surface is taken into account. Two non-dimensional parameters of the number of 

conductivity (Nc) and number of viscosity (Nv) are introduced to show the general behavior of 

nanofluids for augmentation of the thermal conductivity and dynamic viscosity in the presence of 

nanoparticles. A non-dimensional parameter, the enhancement ratio parameter, is introduced to 

evaluate the heat transfer enhancement of nanofluids in comparison with the base fluid.  
 

2. MATHEMATICAL FORMULATIONS  
 

Consider the two-dimensional incompressible and steady forced convection boundary layer flow 

of a nanofluid over a horizontal and isothermal flat plate. The coordinate system is chosen such 

that the x-axis is aligned along the plate. The schematic view of the physical model and the 

coordinate system are depicted in Fig. 1. Following the scale analysis reported by Buongiorno 

[6], the nanoparticles in the fluid are subject to the thermophoresis and Brownian motion forces. 

The thermophoresis tends to move the nanoparticles from hot to cold [6]. The Brownian motion 

tends to move the particles from high concentration areas to low concentration ones. In the 

present study, it is assumed that the plate is hot, and hence, the nanoparticles would move away 

from the plate because of the thermophoresis effect. In contrast, the Brownian motion tends to 

uniform the concentration of nanoparticles in the base fluid. Hence, there is a concentration 

boundary layer of nanoparticles over the plate. Considering hydrodynamic boundary layer, 

thermal boundary layer and nanoparticles concentration boundary layer, there are three distinct 

boundary layers over the plate. These boundary layers are depicted in the Fig. 1.  
 

It is assumed that the plate is isothermal, and the mass flux of the nanoparticles at the plate is 

zero. The nanoparticles volume fraction, temperature and velocity of the free stream are denoted 

by values of φ∞, T∞ and U∞, respectively. As mentioned, the volume fraction of nanoparticles 

strongly influence the thermal conductivity and dynamic viscosity of nanofluids [1, 2]. Therefore, 

in the present study, the thermal conductivity and dynamic viscosity of the nanofluids are 

assumed as a function of local volume fraction of nanoparticles. 
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Figure 1. Physical model and coordinate system. 
 

Following the work of Buongiorno [6], the governing equations, which are the mixture continuity 

equation, the mixture momentum equation, the mixture thermal energy equation and the dispersed 

phase continuity equation, are written as follows, respectively: 
 

( ). 0nfV∇ =           (1) 

( ). .nf nf nf nf nfV V P Vµ∇ = −∇ + ∇ ∇        (2) 

( ) ( ) ( ). .nf nf p pnf
c V T k T c j Tρ ∇ = ∇ ∇ − ∇       (3) 

.

1
.nf p

p

V jφ
ρ

∇ = − ∇          (4) 

where 
p p B p T

T
j D D

T
ρ φ ρ

∇
= − ∇ − . 

The corresponding boundary conditions are as follows: 

 

0,     ,      0,            0.
nf nf w B T

T
u v T T D D at y

y y

φ∂ ∂
= = = + = =

∂ ∂
  (5-a) 

, ,  ,    ,         .nf nfu u T T at yφ φ∞ ∞ ∞→ → → →∞      (5-b) 

 

where subscripts of ∞ and w indicate the properties outside the boundary layer and at the 

wall, respectively. The subscripts of P, nf and f indicate the nanoparticles, nanofluid and 

base fluid, respectively. It is worth noticing that the zero mass flux of nanoparticles at the 

surface, i.e. 0B T

T
D D

y y

φ∂ ∂
+ =

∂ ∂
, in some cases (when the thermophoresis force is very 

strong) may lead to negative values of nanoparticles volume fraction on the surface. In 

this situation, the zero mass flux of nanoparticles at the surface 0
B T

T
D D

y y

φ∂ ∂
+ =

∂ ∂
 could 

be replaced by the zero volume fractions of nanoparticles at the surface. The continuity 

equation, Eq. (1), is satisfied by introducing the stream function (ψ): 

 

,        ,u v
y x

ψ ψ∂ ∂
= = −

∂ ∂         (6) 
 

Here, in order to attain a similariry solution, the local Reynolds number, Rex, and the similarity 

variable, η, are introduced as: 
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,
Re ,

nf nf

x

nf

U xρ
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∞
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1

2Re .x

y

x
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The dimensionless similarity quantities S, θ, and ƒ are introduced:  

( )
1

2

,      ,
w

nf

T T
S f

T T
U v x

φ φψ
θ

φ
∞ ∞

∞ ∞
∞

− −
= = =

−
     (9) 

 

Employing the usual boundary layer approximations and invoking Eqs. (6)-(8), the governing 

equations of Eqs. (1)-(3) are transformed into the following set of non-linear ordinary differential 

equations (see Appendix A): 
 

( ) ( ) 1
S S 0

2

nf nf
f f

S S
µ µ

µ µ∞ ∞

′ 
′′ ′′′ ′′+ + = 

 
       (10) 

 

( ) ( ) 21 1 1
f 0

Pr Pr 2

nf nf

B T

nf

k f k f
S N N

k k
θ θ θ θ θ

∞ ∞

′ 
′′ ′ ′ ′ ′ ′+ + + + = 

 

    (11) 

 

1
f f 0

2

Nt
LeS

Nb
θ′′ ′ ′′+ + =         (12) 

 

subject to the following transformed boundary conditions: 
 

( ) ( ) ( ) ( ) ( )0 0, 0 0, 0 1, 0 0 0S S Nbf Ntθ θ′ ′ ′= = = + =   (13-a) 

 

( ) ( ) ( )1, 0, 0,S f asη θ η η η′ → → → → ∞    (13-b) 

 

where ´ denote ∂/∂η, and the non-dimensional parameters are:  
 

,

,

Pr
nf

nf

ν

α

∞

∞

=           (14-a) 

 

( )

( )
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c D
Nb

c

ρ φ

ρ ν

∞
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( ) ( )

( )
T wp

nfnf

c D T T
Nt

c T

ρ

ρ ν

∞

∞

−
=         (14-c) 

 

,

,

nf

nf B

Le
D

ν ∞
=           (14-d) 

 

where Pr, Nb, Nt and Le are Prandtel number, Brownian motion parameters, thermophoresis 

parameter and Lewis number, respectively. As mentioned, if the zero mass flux of nanoparticles 

at the surface, i.e. Nb.f ´(0) + Nt.θ´(0)=0, leads to negative values of the volume fraction of 
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nanoparticles at the surface, it would be replaced by the zero volume fraction of nanoparticles (f ´ 

(0)=-1). The quantities of local Nusselt number (Nux) and local skin friction, Cfx, are defined as: 
 

( ), ,

.
.W

x

nf nf W

q xh x
Nu

k k T T∞ ∞ ∞

= =
−

       (15-a) 

 

,

2

nf w

x

f

Cf
U

τ

ρ ∞

=           (15-b) 

 

where the quantity of qw is the wall heat flux (-knf,w∂T/∂y at y=0) and τw is the wall skin friction 

(µnf,w∂u/∂y at y=0). The Nusselt number shows the non-dimensional heat transfer, and the skin 

friction parameter indicates the non-dimensional required pump power to maintain the fluid 

flowing over the plate. The mass transfer from the wall, Sherwood number, is identically zero. 

Using similarity variables, the local Nusselt number (Nux) and local skin friction are obtained as: 
 

( )
1

,2
,

,

Re 0 ,
nf w

x nf x

nf

k
Nu

k
θ

−

∞

′= −         (16-a) 

 

( )
1

,2
,

,

Re S 0
nf w

x nf x

nf

Cf
µ

µ ∞

′′=         (16-b) 

 

where Nux×Rex
-1/2

 is the reduced Nusselt number, Nur. Buongiorno et al. [22] and Venerus et al. 

[23], using benchmark experimental tests, demonstrated that the thermal conductivity and 

dynamic viscosity of nanofluids are a linear function of volume fraction of nanoparticles. 

Therefore, following the experimental results, the local thermal conductivity and dynamic 

viscosity of nanofluids are evaluated using the following relations: 
 

,

( )
1nf

nf

k
Nc

k

φ φ

φ
∞

∞ ∞

−
= +         (17a) 

 

,

( )
1nf

nf

Nv
µ φ φ

µ φ
∞

∞ ∞

−
= +         (17b) 

 

where Nc and Nv are non-dimensional parameters which are a function of type of the base, shape 

of nanoparticles, size of nanoparticles, type of nanoparticles, the working temperature, and 

synthesized method of nanofluid [3]. The parameters of Nc (number of conductivity) and Nv 

(number of viscosity) can be evaluated using carve fitting on the reported experimental data. It is 

clear that the local volume fractions of nanoparticles can be vary in the range of zero volume 

fraction of nanoparticles at the surface (φw=0 or f (0)=-1) and free stream volume fraction of 

nanoparticles on the surface (φw= φ∞ or f (0)=0). Hence, substituting these two extreme limits for 

the concentration of nanoparticles in Eqs. 17a and 17b, results in Nc=1-kbf/knf,∞ and Nv=1-µbf/µnf,∞. 

The literature review shows that the previous studies have commonly utilized the Maxwell and 

Brinkman relations for evaluating the thermal conductivity and the dynamic viscosity of 

nanofluids, respectively [8, 9]. Hence, here, the validity of, Eqs. (17-a) and (17-b), is checked 

against the Maxwell and Brinkman relations for Al2O3- water nanofluids in the Fig. 2. This figure 

depicts knf/knf,∞ and µnf/µnf,∞ as a function of local volume fraction of nanoparticles, evaluated 

using Eqs. (17a) and (17b) as well as the analytical relations of Maxwell [2, 19] and Brinkman 

models [2, 20]. As seen, there is an excellent agreement between the results of the analytic 

models and Eqs. (17a) and (17b). Therefore, Eqs. (17-a) and (17-b) are utilized in computations 
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to evaluate the effect of the local concentration of nanoparticles on the thermal conductivity and 

dynamic viscosity of nanofluids. It should be noticed that further experimental results and 

theoretical models can also be modeled by adjusting the non-dimensional values of Nc and Nv. 

Indeed, these parameters show the thermophysical properties of nanofluids in a general form. 
 

 Hence, in the following text the results are reported for various values of Nc and Nv parameters. 

 
 

Figure 2. Comparison between the evaluated values of local thermal conductivity and local viscosity of 

nanofluid as a function of local volume fraction of nanoparticles 

 

Here, using Eqs. (17-a) and (17-b), the reduced Nusselt number and the reduced skin friction are 

written as: 

 

( )( ) ( )1 . 0 0 ,
nf

Nur Nc f θ ′= − +        (18-a) 

 

( )( ) ( )
1

2
,Re 1 . 0 S 0f xC Nv f∞

′′= +        (18-b) 

 

In order to examine the heat transfer enhancement achieved by using nanoparticles, compared to 

the base fluid, the enhancement ratio parameter is introduced as:  

 

( )
( ) ( )

( )

1

1 2

2
1 . 0 0

1
1 0

nfdrift flux nf

bf bf bf

Nc fh
Nv

h Nc

θ ρ

θ ρ
−

′+  
= −  

′−  
     (19) 

 

The enhancement ratio shows the ratio of the convective heat transfer onanofluids to the 

convective heat transfer of the base fluid. The presence of nanoparticles in the base fluid 

influences the viscosity and other thermo-physical properties of the host fluid. As the 

Reynolds number is a function of the fluid properties, the Reynolds numbers of the 

nanofluid and the base fluid are not identical. In addition, the presence of nanoparticles 

increases the thermal conductivity of the base fluid. Therefore, the reduced Nusselt 

number of nanofluid (Nurnf=Renf 
-½ 

× hnf.x/knf) may decrease (because of the increase of 

the thermal conductivity); however, the heat transfer coefficient, h, may increase. In 

addition, the presence of nanoparticles increases the dynamic viscosity of the base fluid, 



Advanced Energy: An International Journal (AEIJ), Vol. 3, No. 1, January 2016 

 

8 

and consequently, it affects the Reynolds number. Hence, the Reynolds number is a 

decreasing function of volume fraction of nanoparticles. The decrease of the Reynolds 

number, consequently, tends to reduce the heat transfer coefficient, hnf. Therefore, the 

variation of reduced Nusselt number cannot adequately show the enhancement of using 

nanoparticles. In contrast, but the effect of presence of nanoparticles on the heat transfer 

enactment can be adequately seen in the enhancement ratio parameter.  
 

As the most of nanofluids are dilute mixture of nanoparticles, dispersed in a base fluid, the 

density of the nanofluid is about the density of the base fluid. For example, (ρnf/ρbf)
1/2

 is obtained 

as 0.99 for a practical case with 2.5% volume fraction of Al2O3 nanoparticles dispersed in the 

water. The value of (ρnf/ρbf)
1/2 is about unit. Hence, the term (ρnf/ρbf)

1/2 is assumed as unity in the 

following text for convenience.  

 

Finally, the enhancement ratio, which compares the convective heat transfer coefficients of the 

non-homogeneous model (hdrift-flux) and the homogeneous model (hhom), is introduced as follow: 

 

( )( )
( )

( )hom hom

0
1 . 0

0

drift fluxdrift flux
h

Nc f
h

θ

θ
−−

′
= +

′
       (20) 

 

which compares the evaluated enhancement using the non-homogeneous model (hdrift-flux) and the 

homogeneous model (hhom).  
 

3. NUMERICAL METHOD 
 
Eqs. (17-a) and (17-b) and their derivatives are substituted in the governing equations, i.e.  Eqs. 

(10) and (11). The Prandtl number for the nanofluids can be evaluated using Prnf=Prbf ×(cnf/cbf)× 

(1-Nc)/(1-Nv). Later, the governing equations, Eq. (10)-(12), including the variable thermal 

conductivity and variable dynamic viscosity (i.e. Eqs. (17-a) and (17-b)) subject to the boundary 

conditions, Eqs. (13-a) and (12-b), are numerically solved using a finite difference solver that 

implements the 3-stage Lobatto IIIa formula with a collocation formula to uniform the error in the 

domain of the solution associated with an automatic mesh adaptation. The solver is the same as 

the work Shampine et al. [24]. A maximum relative error of 10
-8

 is used as the stopping criteria 

for the iterations. The large value of η∞=10 is adopted as the finite value of infinity for all 

calculations. Using η∞=10, the results show that the boundary layer profiles asymptotically tend 

to zero and any further increase of η∞ does not change the solution. In a case in which 

Nv=Nc=Nb=Nt=0and cnf/cbf=1, the present study reduces to the boundary layer heat transfer of a 

conventional pure fluid. In this case, the values of θbf´(0) are compared with the results reported 

by Lloyd and Sparrow [25] and Wilks [26]. When Prbf=10 and Prbf=100, the values of θbf´(0) are 

obtained as -0.72814 and -1.57183, respectively. Lloyd and Sparrow [25] as well as Wilks [26] 

obtained the values of θ´(0)=-0.7281and θ´(0)=-1.572 for Prbf=10 and Prbf=100, respectively . 

Moreover, we calculated the value of S´´(0) as 0.33206 where Ishak et al. [27] reported 

S´´(0)=0.3321. It is worth mentioning that in the case of Prbf=7.0 the value of θbf´(0) is computed 

as -0.64592.  

 

The values of S nf ´´(0)/ S bf ´´(0), θnf´(0)/θbf´(0), f (0) are brought in Tables 1-3 for a practical 

combination of non-dimensional parameters. The results of Tables 1-3 are computed using the 

finite difference code. The values of f ´(0) can be directly evaluated using the boundary condition 

of Eq. (16-a) (i.e.  f ´(0)=-Nt.θ´(0)/Nb). Tables 1-3 provides all of the required initial conditions 

for solving Eqs. (10)-(12) by Runge-Kutta-Fehlberg method. Hence, using the results of Tables 1-

3, Eqs. (10)-(12) were also solved utilizing the Runge-Kutta-Fehlberg method with variable size 

step and error control. The implementation of the Runge-Kutta-Fehlberg is the same as the 
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Appendix D.4 in the book by Curtis [28]. The maximum truncation error was fixed as 1×10
-10

. 

Using Runge-Kutta-Fehlberg, the average number of steps was about 24000 steps. The results of 

the Runge-Kutta-Fehlberg method show that the boundary conditions are satisfied correctly. In 

addition, a very good agreement between the results of finite difference solver and the Runge-

Kutta-Fehlberg is observed. It is worth noticing that the practical value of Lewis number is very 

high; hence, the thickness of the concentration boundary layer is very low in comparison with the 

thickness of the momentum and thermal boundary layers. Therefore, obtaining an accurate 

solution requires good initial guesses or using continuation methods. Hence, the results of Tables 

1-3 can also be utilized as the initial guesses for future studies. 
 

4. RESULTS AND DISCUSSION  
 

In order to examine the effect of non-dimensional parameters on the boundary layer heat and 

mass transfer of nanofluids, the practical range of non-dimensional parameters should be 

discussed. The Brownian diffusion coefficient, DB, as well as thermophoresis coefficient, DT, 

ranges from 10-10 to 10-12 m2/s for the water base nanofluids at room temperature with 

nanoparticles of 100 nm diameters [6]. Assuming the conventional range of thermo-physical 

properties at room temperature, it is found that Nb and Nt are very small and in the range of 10
-8

 

to 10-4. The Lewis number is very high in the range of 10+3
 to 10+5. The parameters of variable 

thermal conductivity and variable viscosity conventionally are in the range of 0 to 0.2.  The ratio 

of cnf/cbf is calculated for selected volume fractions of Al2O3 nanoparticles in the water. It is found 

that cnf/cbf =1.0 at (0% Vol. Al2O3), cnf/cbf =0.98 (at 2.5% Vol. Al2O3) and cnf/cbf =0.96 (at 5% Vol. 

Al2O3). Hence, cnf/cbf is assumed to be fixed as 0.98 for convenience in the following text.  

 

The governing equations are solved for a typical case when Nb=Nt=10-6, Le=10+4, Prbf=7.0 and 

Nc=Nv=0.1. The results are plotted in the Fig. 3. This figure depicts the non-dimensional profiles 

of velocity, temperature, and concentration of nanofluids over a flat plate. The concentration 

profile was negative; hence, it was multiplied by -10 and then plotted in the Fig. 3 for 

convenience. As seen, all of the profiles asymptotically tend to the boundary conditions as η 

increases. It is clear that the thickness of the concentration boundary layer is much lower than that 

of the hydrodynamic and thermal boundary layers. This is in good agreement with the physic of 

the concentration boundary layer as the Lewis number is very high for nanofluids. The Lewis 

number shows the ratio of cinematic viscosity of the nanofluid to the Brownian diffusion 

coefficient. As the Brownian diffusion coefficient (DB) is very small, the Lewis number is very 

large. Hence, it is expected that the thickness of the concentration boundary layer to be much 

lower than that of the hydrodynamic boundary layer. Moreover, the Prandtl number for 

nanofluids is comparatively high (Prbf>1), and hence, the thickness of the hydrodynamic 

boundary layer is higher than the thickness of the thermal boundary layer as seen in Fig. 3. 

 

 
 

Figure 3. The velocity, temperature and concentration profiles for a typical case. 
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The governing differential equations, Eqs. (10)-(12), are numerically solved for different 

combinations of non-dimensional parameters. It is found that the variation of thermophoresis 

parameter, Brownian motion parameter, and Lewis number does not show significant effect on 

the velocity and temperature profiles. Indeed, the Brownian motion and thermophoresis 

parameters are very small, and hence, the direct effect of variation of these parameters on the 

energy equation can be neglected. However, in the equation of nanoparticles conservation, the 

ratio of the thermophoresis parameter to Brownian motion parameter (i.e. Nt/Nb) is not negligible 

and may induce significant effects on the concentration boundary layer of nanoparticles. The 

concentration boundary layer consequently induces indirect effects on the hydrodynamic and 

thermal boundary layer through the variation of the thermo-physical properties.  

 

It is also found that the effect of the variable thermal conductivity parameter (Nv) as well as the 

variable viscosity parameter (Nc) on the boundary layer profiles (i.e. hydrodynamic, thermal and 

concentration profiles) is comparatively negligible. However, the effect of these parameters, Nc 

and Nv, on the surface skin friction and surface heat transfer is completely significant. This is 

because of the impact of these parameters on the thermo-physical properties. As mentioned, the 

effect of non-dimensional parameters, i.e. Nb, Nt, Le, Nc and Nv, on the non-dimensional velocity 

and temperature profiles is comparatively negligible. Thus, only the effect of non-dimensional 

parameters on the concentration profiles is plotted in the Figs. 4-5. 

 

Fig. 4(a) depicts the effect of Brownian motion parameter on the concentration profiles. This 

figure illustrates that an increase of Brownian motion parameter (considering the negative sign) 

would increase the values of the concentration profiles in the vicinity of the plate. The zero values 

of concentration profiles, f (η)→0, indicates that the local volume fraction of nanoparticles is 

about the free stream volume fraction. f (η)→-1 indicates that the local volume fraction of 

nanoparticles tends to zero. The positive values of the concentration profiles in the vicinity of the 

plate indicate that the volume fraction of nanoparticles is higher than the concentration of the free 

stream flow. As seen, there are two branches of behavior for concentration profiles. The first 

branch of behavior is when the Brownian motion parameter is very low (in this case between 10
-9

 

to 10
-8

). In this case, the volume fraction of nanoparticles at the surface would remain zero 

(because the negative volume fraction of nanoparticles is not allow); this is where the f (0)=-1. 

Therefore, in the first branch of the behavior, the thermophoresis effect is the dominant effect and 

tends to strongly move the nanoparticles away from the surface. Consequently, the nanoparticles 

which are swept from the surface would be gathered in the vicinity of the plate (this is where the 

concentration of nanoparticles is higher than the concentration of the free stream f (0)>0). Later, 

the Brownian motion effect would tent to uniform the nanoparticles toward the edge of the 

concentration boundary layer smoothly. The augmentation of the Brownian motion parameter 

tends to reduce the peak of the high concentration region. In the second branch of behavior, the 

Brownian motion forces are comparable with the thermophoresis forces. In these cases, the 

volume fractions of nanoparticles at the surface are less than the free stream volume fraction; 

however, they are not zero anymore. The increase of Brownian motion parameter would increase 

the concentration of nanoparticles up to the concentration of free stream. Therefore, for high 

values of Brownian motion parameter, the nanoparticles in the entire of the boundary layer are 

almost uniform. As seen, in the second branch of the behavior (i.e. f (0)>-1), the variation of 

Brownian motion parameter does not affect the thickness of the boundary layer. Indeed, the 

concentration of nanoparticles at the plate would be adjusted by the balance between the 

Brownian motion force and the thermophoresis force. However, in the first branch of behavior, in 

which the volume fraction of nanoparticles is zero, the Brownian motion and thermophoresis 

forces would be balanced in the boundary layer (not at the surface). Therefore, in this case (i.e. f 

(0)>-1) the thickness of the concentration boundary layer is significantly affected by the 

Brownian motion parameter (i.e. an increase of Brownian motion parameter would decrease the 

boundary layer thickness). Fig. 4(b) depicts the effect of the thermophoresis parameter on the 

concentration profiles. As seen, the concentration of nanoparticles at the surface tends to zero for 
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high values of the thermophoresis parameters. However, for comparatively low values of the 

thermophoresis parameter, the concentration of nanoparticles at the surface is lower than the 

concentration of the free stream. For very low values of the thermophoresis parameter (Nt = 10-9), 

the boundary layer of nanoparticles almost vanished. The results of this figure are in very good 

agreement with the results of Fig. 4(a). 

 

 
 

Figure 4. The concentration profiles for selected values of (a) Brownian motion and (b) of thermophoresis 

parameters. 
 

Figs. 5(a) and 5(b) show the effect of Lewis (Le) and Prandtl (Pr) numbers on the concentration 

profiles, respectively. As mentioned, a raise in the Lewis number would decrease the thickness of 

the concentration boundary layer. The Prandtl number comparatively shows the ratio of the 

thickness of the hydrodynamic boundary layer to the thermal boundary layer. The thickness of the 

non-dimensional hydrodynamic boundary layer is almost fixed. Hence, an increase of Prandtl 

number would reduce the thickness of the thermal boundary layer. The thinner are the thermal 

boundary layers, the higher are the temperature gradients near the surface. Consequently, as the 

temperature gradient increases the thermophoresis force increases. An increase of the 

thermophoresis force would decrease the concentration of nanoparticles. Therefore, it would be 

expected that augmentation of Prandtl number reduce the concentration of nanoparticles in the 

vicinity of the plate (As seen in Fig. 5(b)).  
 

 
 

Figure 5: The concentration profiles for selected values of (a) Lewis and (b) Prandtl Numbers. 

 

It is found that variations of the number of conductivity (Nc) and the number of viscosity (Nv) 

parameters induce a very slight effect on the boundary layer profiles. Hence, the variation of 

boundary layer profiles as a function of these parameters was not depicted in figures. However, 



Advanced Energy: An International Journal (AEIJ), Vol. 3, No. 1, January 2016 

 

12 

the results indicate that an increase of Nc would slightly decrease the temperature profiles in the 

boundary layer. An increase of Nv would slightly increase the temperature profiles and decrease 

the velocity profiles. Therefore, as Nc increases, θ´(0) slightly increases.  Moreover, as the Nv 

increases, S´´(0) slightly increases and θ´(0) decreases. 

 

Fig. 6 shows the variation of f (0) as a function of Brownian motion parameter for selected values 

of the thermophoresis parameter and Lewis number when the variable thermal conductivity (Nc) 

and variable viscosity (Nv) parameters are zero. In this figure, the curves with diamond symbols 

depict the results for Le=10+3. As the Brownian motion parameter is a very small value, this 

parameter is plotted in the logarithmic scale. An augmentation of the Brownian motion parameter 

would reduce the magnitude of –f (0). In contrast, an increase of thermophoresis parameters 

would increase the magnitude of –f (0). It is clear that f (0) could reach to the constant value of -1 

for high values of thermophoresis parameter and low values of Brownian motion parameter. The 

constant value of -1 is the physical limit of non-dimensional concentration at the plate which 

shows the zero volume fractions of nanoparticles at the surface. The concentrations lower than -1 

shows negative volume fractions of nanoparticles which physically is not possible. As the Lewis 

number increases, the magnitude of –f (0) decreases (i.e. the volume fraction of nanoparticles at 

the plate increases). As seen, the results of this figure are in good agreement with the results of 

previous figures.  
 

 
 

Figure 6: The non-dimensional concentration at the plate (f (0)) as a function of Nb for selected values of 

thermophoresis parameter when Le = 1.0E+3 and Le = 1.0E+4. 

 

The variation of non-dimensional values of the surface skin friction, Snf´´(0)/ Sbf´´(0), temperature 

gradient, θnf´(0)/ θbf´(0) and surface concentration are shown in Tables 1-3 respectively, for 

selected values of the non-dimensional parameters (i.e. Nb, Nt, Le, Pr, Nc and Nv). The values of 

non-dimensional parameters are selected in agreement with the practical range of these 

parameters. It is worth noticing that the value of Sbf´´(0) is fixed as 0.33206 for the base fluid. The 

non-dimensional temperature gradient of the base fluid at the surface, θbf´(0), is only a function of 

Prandtl number. The corresponding values of θbf´(0) for Prbf=7.0 and Prbf=100 were mentioned in 

the previous section. Tables 1 and 2 show that the increase of the thermal conductivity parameter 

(Nc) would decrease the magnitude of –f (0) as well as θnf´(0)/ θbf´(0) in most cases. Hence, the 

higher Nc, the higher is nanoparticles volume fraction at the plate. In fact, the increase of Nc, 

which increases the volume fraction of nanoparticles in the vicinity of the plate, would increase 

the overall thermal conductivity of the nanofluid near the surface. As the thermal conductivity 

increases, the temperature gradient decreases. Consequently, a decrease of temperature gradient 

would reduce the thermophoresis force, which tends to move the nanoparticles away from the 

plate; hence the volume fraction of nanoparticles in the vicinity of the plate would increase. 

Hence, as seen, an increase of Nv, increases θnf´(0)/ θbf´(0), Snf´´(0)/ Sbf´´(0) and the magnitude of 

–f (0) in most cases. The augmentation of Nv reduces the local viscosity of the nanofluid in the 

vicinity of the plate (where the volume fraction of nanoparticles is lower than the volume fraction 
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of the free stream). Table 3 depicts that the variation of Nc does not show any effect on the 

Snf´´(0)/ Sbf´´(0) when Nv=0. Indeed, when Nv=0, Eq. (12) is independent of Nc. However, when 

Nv=0.1, a raise of Nc would very slightly decrease Snf´´(0)/ Sbf´´(0). This effect on the Snf´´(0)/ 

Sbf´´(0) originates from the indirect effect of Nc on the concentration profiles. However, the effect 

of variation of Nc on the Snf´´(0)/ Sbf´´(0) is comparatively negligible. It is evident that an 

augmentation of Nv would decrease the viscosity of the nanofluid in the vicinity of the plate 

(where the volume fraction of nanoparticles is lower than the volume fraction of free stream). 

 
Table 1. The non-dimensional velocity gradient at the surface Snf´´(0)/ Sbf´´(0) 

 
 Prbf =7.0 Prbf =100 

Le Nb Nt 
Nv=0.0 Nv=0.1 Nv=0.0 Nv=0.1 

Nc=0.0 Nc=0.1 Nc=0.0 Nc=0.1 Nc=0.0 Nc=0.1 Nc=0 Nc=0.1 

10
+3

 

10-

5
 

10
-5

 1.00000 1.00000 1.01926 1.01874 1.00000 1.00000 1.04290 1.04211 

10
-6

 1.00000 1.00000 1.00190 1.00184 1.00000 1.00000 1.00415 1.00404 

10
-7

 1.00000 1.00000 1.00019 1.00018 1.00000 1.00000 1.00041 1.00040 

10-

6
 

10
-5

 1.00000 1.00000 1.11121 1.11122 1.00000 1.00000 1.11297 1.11295 

10
-6

 1.00000 1.00000 1.01926 1.01874 1.00000 1.00000 1.04291 1.04212 

10
-7

 1.00000 1.00000 1.00190 1.00184 1.00000 1.00000 1.00415 1.00404 

10-

7
 

10
-5

 1.00000 1.00000 1.11904 1.11883 1.00000 1.00000 1.13065 1.12990 

10
-6

 1.00000 1.00000 1.11121 1.11122 1.00000 1.00000 1.11297 1.11295 

10
-7

 1.00000 1.00000 1.01926 1.01874 1.00000 1.00000 1.04291 1.04212 

10
+4

 

10-

5
 

10
-5

 1.00000 1.00000 1.00910 1.00881 1.00000 1.00000 1.02168 1.02112 

10
-6

 1.00000 1.00000 1.00090 1.00087 1.00000 1.00000 1.00213 1.00207 

10
-7

 1.00000 1.00000 1.00009 1.00009 1.00000 1.00000 1.00021 1.00021 

10-

6
 

10
-5

 1.00000 1.00000 1.09733 1.09736 1.00000 1.00000 1.11124 1.11124 

10
-6

 1.00000 1.00000 1.00910 1.00881 1.00000 1.00000 1.02169 1.02112 

10
-7

 1.00000 1.00000 1.00090 1.00087 1.00000 1.00000 1.00213 1.00207 

10-

7
 

10
-5

 1.00000 1.00000 1.11186 1.11186 1.00000 1.00000 1.11386 1.11379 

10
-6

 1.00000 1.00000 1.09733 1.09736 1.00000 1.00000 1.11124 1.11124 

 
Table 2. The non-dimensional temperature gradient on the plate θnf´(0)/θbf´(0) 

 
 Pr=7.0 Pr=100 

Le Nb Nt 
Nv=0.0 Nv=0.1 Nv=0.0 Nv=0.1 

Nc=0.0 Nc=0.1 Nc=0.0 Nc=0.1 Nc=0.0 Nc=0.1 Nc=0.0 Nc=0.1 

10
+3

 

10
-

5
 

10
-5

 0.99320 0.97445 1.03069 1.01165 0.99311 0.99082 1.03517 1.03318 

10
-6

 0.99322 0.96017 1.02921 0.99503 0.99327 0.96203 1.02944 0.99711 

10
-7

 0.99323 0.95877 1.02907 0.99341 0.99328 0.95928 1.02887 0.99367 

10
-

6
 

10
-5

 0.99320 1.05622 1.03772 1.10296 0.99290 1.05987 1.03857 1.10819 

10
-6

 0.99322 0.97447 1.03072 1.01167 0.99327 0.99097 1.03535 1.03334 

10
-7

 0.99323 0.96017 1.02922 0.99503 0.99328 0.96205 1.02946 0.99713 

10
-

7
 

10
-5

 0.99319 1.07803 1.02949 1.11592 0.99283 1.21493 0.97653 1.19653 

10
-6

 0.99322 1.05625 1.03775 1.10299 0.99325 1.06022 1.03896 1.10859 

10
-7

 0.99323 0.97447 1.03072 1.01167 0.99328 0.99098 1.03536 1.03336 

10
+4

 

10
-

5
 

10
-5

 0.99320 0.96640 1.02944 1.00193 0.99298 0.97635 1.03053 1.01367 

10
-6

 0.99322 0.95939 1.02909 0.99409 0.99325 0.96068 1.02898 0.99528 

10
-7

 0.99323 0.95869 1.02905 0.99331 0.99328 0.95915 1.02883 0.99348 

10
-

6
 

10
-5

 0.99320 1.04596 1.03332 1.08967 0.99289 1.05574 1.03764 1.10264 

10
-6

 0.99322 0.96642 1.02947 1.00196 0.99325 0.97660 1.03084 1.01396 

10
-7

 0.99323 0.95939 1.02909 0.99409 0.99328 0.96070 1.02901 0.99531 

10
-

7
 

10
-5

 0.99319 1.06319 1.03277 1.10467 0.99281 1.08489 1.02413 1.11771 

10
-6

 0.99322 1.04598 1.03335 1.08970 0.99324 1.05609 1.03805 1.10305 

10
-7

 0.99323 0.96642 1.02947 1.00196 0.99328 0.97663 1.03087 1.01399 
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Table 3. The non-dimensional concentration profiles on the plate-f (0) 

 

 Pr=7.0 Pr=100 

Le Nb Nt 
Nv=0.0 Nv=0.1 Nv=0.0 Nv=0.1 

Nc=0.0 Nc=0.1 Nc=0 Nc=0.1 Nc=0 Nc=0.1 Nc=0 Nc=0.1 

10
+3

 

10
-

5 

10
-5

 0.18381 0.17882 0.18948 0.18440 0.40233 0.39507 0.41180 0.40452 

10
-6

 0.01838 0.01778 0.01900 0.01839 0.04024 0.03917 0.04134 0.04026 

10
-7

 0.00184 0.00178 0.00190 0.00184 0.00402 0.00391 0.00414 0.00402 

10
-

6 

10
-5

 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

10
-6

 0.18381 0.17882 0.18949 0.18441 0.40238 0.39511 0.41184 0.40457 

10
-7

 0.01838 0.01778 0.01900 0.01839 0.04024 0.03917 0.04134 0.04026 

10
-

7 

10
-5

 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

10
-6

 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

10
-7

 0.18381 0.17882 0.18949 0.18441 0.40238 0.39512 0.41185 0.40457 

10
+4

 

10
-

5 

10
-5

 0.08729 0.08456 0.09023 0.08743 0.20612 0.20078 0.21228 0.20685 

10
-6

 0.00873 0.00843 0.00904 0.00873 0.02062 0.01996 0.02130 0.02062 

10
-7

 0.00087 0.00084 0.00090 0.00087 0.00206 0.00200 0.00213 0.00206 

10
-

6 

10
-5

 0.87286 0.87257 0.88750 0.88773 1.00000 1.00000 1.00000 1.00000 

10
-6

 0.08729 0.08456 0.09023 0.08743 0.20616 0.20083 0.21233 0.20690 

10
-7

 0.00873 0.00843 0.00904 0.00873 0.02062 0.01996 0.02130 0.02062 

10
-

7 

10
-5

 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

10
-6

 0.87288 0.87259 0.88753 0.88775 1.00000 1.00000 1.00000 1.00000 

10
-7

 0.08729 0.08456 0.09023 0.08743 0.20617 0.20083 0.21234 0.20690 

 
Table 4. The values of S´´(0) and θ´(0) for homogenous model of nanofluid Prnf=0.98×Prbf  × (1-Nc)/(1-Nv) 

 
 Prbf=7.0 Prbf=100 

 
Nv=0.0 Nv=0.1 Nv=0.0 Nv=0.1 

Nc=0.0 Nc=0.1 Nc=0 Nc=0.1 Nc=0 Nc=0.1 Nc=0 Nc=0.1 

S''(0) 0.332057 0.332057 0.332057 0.332057 0.332057 0.332057 1.617118 1.561275 

θ´(0) 0.641547 0.619192 0.664686 0.641547 1.561275 1.507357 0.332057 0.332057 

 

It is clear that an increase of the thermophoresis parameter (Nt) or decrease of the Brownian 

motion parameter (Nb) would increase the magnitude of – f (0) at the surface, which results in 

decrease of the volume fraction of nanoparticles in the vicinity of the plate. However, for zero 

values of Nc and Nv (i.e. model of constant thermo physical properties), the variation of Nb and 

Nt induce a very slight effect of on the θnf´(0)/ θbf´(0), and hence, the effect of Nb as well as Nt on 

the non-dimensional temperature gradient at the wall can be neglected in the case of Nv=Nc=0. 

This slight variation of θnf´(0)/ θbf´(0) is because of the small contribution of migration of 

nanoparticles (i.e. the terms of thermophoresis and Brownian motion) in the energy equation.  

However, for conventional values of variable thermal conductivity and viscosity parameters (i.e. 

Nc=Nv=0.1), the increase of Nt would increase θnf´(0)/ θbf´(0). By contrast, an increase of Nb 

would decrease θnf´(0)/ θbf´(0). In this case (i.e. Nc=Nv=0.1), the variation of thermo-physical 

properties because of the variation of volume fraction of nanoparticles (- f (0)) is the dominant 

effect in the vicinity of the plate.  

 

The variable viscosity parameter induces a significant effect on the non-dimensional surface skin 

friction, Snf´´(0)/ Sbf´´(0). However, the effect of Nc on the Snf´´(0)/ Sbf´´(0) is negligible. This is 

because of the fact that Nv directly affects the viscosity of nanofluid near the surface, but Nc first 

affects the concentration profiles, and consequently, the concentration profiles affect the 

momentum boundary layer through the variation of dynamic viscosity of the nanofluid. An 

increase of Nt or decrease of Nb would increase the non-dimensional surface skin friction, 

Snf´´(0)/ Sbf´´(0).  
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The effect of Lewis and Prandtl numbers on the magnitude of non-dimensional temperature 

gradient, θnf´(0)/ θbf´(0), and surface friction, Snf´´(0)/ Sbf´´(0),  is very slight. However, an 

augmentation of Prandtl number would raise the magnitude of – f (0), which reduces the volume 

fraction of nanoparticles at the surface. In contrast, a raise of Lewis number would reduce the 

magnitude of – f (0). An increase of Prandtl number would decrease the thickness of thermal 

boundary layer, and consequently, the temperature near the plate would increase; hence, the 

thermophoresis force will boosted and in results the volume fraction of nanoparticles would 

decrease (i.e. the magnitude of –f (0) would increase). In contrast, the augmentation of Lewis 

number would reduce the thickness of the concentration boundary layer, which leads to increase 

of Brownian force and consequently increase of the volume fraction of nanoparticles (i.e. the 

magnitude of –f (0) would decrease). 

 

The values of the enhancement ratio of the nanofluid to the base fluid can be easily obtained 

using Eq. (19) and the results of Tables 1 and 2. The maximum value of enhancement ratio (hdrift-

flux/hbf) is obtained as 1.22 for the case of Nb=10-7, Nt=10-5, Prbf=100, Le=10+3, Nv=0 and Nc=0.1; 

the minimum value of the enhancement ratio is obtained as 0.926 for the case of Nb=10-7, Nt=10-

5
, Pr=100, Le=10

+3
, Nv=0.1 and Nc=0. Therefore, it can be concluded that using nanoparticles 

does not always enhance the heat transfer rate. In some cases, using nanoparticles would increase 

the heat transfer about 22%; however, in some other cases, the heat transfer may even decrease 

about -7%. However, for a typical case (i.e. Nc=0.1 and Nv=0.1), the values of enhancement ratio 

are calculated between 1.045 and 1.135.  

 

The enhancement ratio of non-homogenous (drift-flux) model to the homogenous model is also 

calculated for the results of Tables 1 and 2. It is found that the maximum value of the 

enhancement ratio (hdrift-flux/hhom) is 1.140 for the case of Nb=10-7, Nt=10-5, Pr=100, Le=10+3, 

Nv=0.1 and Nc=0.1; the minimum value of the enhancement ratio (hdrift-flux/hhom) is obtained as 

0.949 for the case of Nb=10
-7

, Nt=10
-5

, Pr=100, Le=10
+3

, Nv=0.1 and Nc=0.1. Therefore, the 

homogeneous model may significantly underestimate the enhancement of nanofluids (about 14%) 

in comparison with the non-homogenous (drift-flux) model. However, in some cases, the 

homogeneous model may also overestimate the heat transfer of nanofluids about (5%). These 

results demonstrate that the concentration boundary layer significantly affects the forced 

convection heat transfer of nanofluids.   

  

5. CONCLUSION 
 
A drift flux model was utilized to examine the effect of the local concentration of nanoparticles 

on the boundary layer heat and mass transfer of nanofluids. The volume fraction of nanoparticles 

at the surface was evaluated using the zero flux of nanoparticles at the surface. The effect of local 

volume fraction of nanoparticles on the thermal conductivity and viscosity of nanofluids is taken 

into account. Considering an arbitrary function of thermal conductivity and viscosity for 

nanofluids, the governing partial differential equations were reduced to a set of highly nonlinear 

ordinary differential equations by means of similarity variables. Then, the thermal conductivity 

parameter (Nc) and the dynamic viscosity parameter (Nv) were introduced to evaluate the local 

variation of thermal conductivity and dynamic viscosity of the nanofluid. The governing 

equations were numerically solved for different values of non-dimensional parameters. The main 

outcomes of the present study can be summarized as follows:  

 

1. The effect of nanofluid parameters, i.e. Nb, Nt, Le, Nv and Nc, on the non-dimensional 

velocity and temperature profiles is comparatively negligible. However, the variation of 

Nb, Nt and Le would significantly affect the concentration profiles. Therefore, in the case 

of variable thermal conductivity and variable viscosity, i.e. Nv=0.1 and Nc=0.1, the 
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variation of volume fraction of nanoparticles strongly affects the surface heat transfer 

trough the variation of thermo-physical properties. 

2. An increase of the thermophoresis parameter (Nt) or decrease of Brownian motion 

parameter (Nb) would decrease the volume fraction of nanoparticles at the surface. The 

high values of thermophoresis parameter would lead to zero volume fraction of 

nanoparticles at the surface. An augmentation of Lewis number would raise the volume 

fraction of nanoparticles at the surface (would decrease the concentration difference 

between the free stream and the surface). 

3. The enhancement ratio between the nanofluid and base fluid (hdrift-flux/hbf) shows that using 

nanofluids may not always enhance the heat transfer. In some cases, the heat transfer 

from the plate may be reduced about -7% by using nanofluids. However, in some cases, 

the heat transfer may be increased about 22% by using nanofluids. Therefore, adjusting 

the non-dimensional parameters of nanofluids (by adjusting the size and type of 

nanoparticles or other available design parameters) to increase the convective heat 

transfer of nanofluids is crucial.  

4. The enhancement ratio, hdrift-flux/hhom, between the non-homogenous model of nanofluids 

(drift-flux model) and the homogenous model, reveals that the enhancement of nanofluids 

using homogenous models may be underestimated about 14%. However, in some cases, 

the homogenous model may overestimate the heat transfer enhancement about 5%. 

 
6. NOMENCLATURE 
 

(x, y) Cartesian coordinates 

C Specific heat (J/ kg. K) 

DB Brownian diffusion coefficient (m
2
/s) 

DT Thermophoretic diffusion coefficient (m
2
/s) 

F Rescaled nanoparticles volume fraction, nanoparticles concentration 

H Convective heat transfer coefficient (J/m2) 

J Drift flux 

K Thermal conductivity (W/ m K) 

Le Lewis number 

Nb Brownian motion parameter  

Nc Variable thermal conductivity parameter 

Nr Buoyancy ratio 

Nt Thermophoresis parameter 

Nv Variable viscosity parameter 

P Pressure (Pa) 

Pr Prandtl number 

Rex Local Reynolds number 

S Dimensionless stream function 

T Temperature (K) 

u, v x and y velocity components (m/s) 

V Velocity 

 

Greek Symbols 

 
(ρc) Heat capacity (J/m

3
 K) 

µ Viscosity (Pa s) 

Α Thermal diffusivity  (m
2
/s) 

Η Dimensionless distance 

Θ Dimensionless temperature 

Ν Cinematic viscosity 

Ρ Density (kg/m
3
) 

φ Nanoparticles volume fraction 

ψ Stream function 
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Subscripts 

 
∞ Free stream 

Bf The base fluid 

drift-flux The drift flux model 

Hom The homogenous model 

Nf Nanofluid 

P Nanoparticles 

W Plate, wall, surface 
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Appendix A 

 
Using the boundary layer approximations, the momentum equations, Eq. (2), is written as: 
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which can be rewritten as: 
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where using similarity variables:  
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The other terms of Eq. (A2) have been obtained as: 
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Substituting Eqs. (A4-A8) in Eq. (A2) yields 
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Simplifying Eq. (A9) leads to Eq. (10).  

 

Using typical boundary layer assumptions, Eq. (3), in the Cartesian system, is written as 
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Substituting Eqs. (A4-A7) and Eqs. (A11-A14) into Eq. (A9) yields: 
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Simplifying Eq. (A15) leads to Eq. (11).  

 

The conservation of nanoparticles, Eq. (4), is written as: 
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Substituting Eqs. (A4), (A5), (A11), (A12), (A17) into Eq. (A16) yields: 
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Simplifying Eq. (A18) leads to Eq. (12). Using Eqs. (17-a) and (17-b), the terms
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