
Advances in Engineering: an International Journal (ADEIJ), Vol.3, No.3

13

HOW TO USE CONVOLUTIONAL NEURAL

NETWORK TO BUILD AN AI REFEREE

RuiGuo

Culver Academies, Culver, Indiana, USA

ABSTRACT

The purpose of this paper is to solve a significant problem in fencing: high-level referees are expensive,

and low-level referees might not make correct and consistent calls. This research project compared a

computer-based program to a referee's performance to solve the problem of inconsistency and frequency of

errors. The paper has four sections, including background information, methodology, results, and a

conclusion. The introduction includes the motivation and location for the research. The background

consists of the basic saber fencing rules, defines machine learning, and describes the Convolution Neural

Network tool. Next, the methodology section includes four critical subject areas human post estimation, the

referee, training an Artificial Intelligence (AI) program, and testing the program's accuracy by examining

fencing videos. Only two of the videos tested were judged incorrectly among all fifteen videos tested, and

both had valid reasons. Therefore, the program was relatively accurate.

KEYWORDS

Saber Fencing, Machine Learning, Convolutional Neural Network, Referee

1. INTRODUCTION

Data analysis has been widely used in many sports. However, with fewer participants, fencing has

not yet tested the benefits of data analysis. Refereeing a fencing match is an opportunity for data

analysis. The inspiration for this research originated from a fencing tournament during the

summer when an inexperienced referee made calls in error, changing the match's outcome.

Therefore, the idea of creating a program that can replace a fencing referee to make correct calls e

merged. It is critical to extract data from fencing and write rules as codes to be compatible with

the data for implementation. For instance, the inbox rules, the fencer with a faster hand and foot

will get the point, can be converted into data science by calculating and comparing the speed of

each fencer's foot and hand movements. The basis of an AI referee and data analysis is extracting

data from still images extracted from videos. The significance is separating videos into single

photo graphs and documenting the positions of the human joints in each image. This step requires

machine learning and human post estimation, which a previous study had already completed. A

Convolutional Neural Network (CNN), a neural network AI model created on Github, can be

trained to detect human movement, blades, and other objects in the image using supervised

learning. In addition to writing codes to implement fencing rules, training a customized AI

program to identify blades in the picture is also possible. Further explanation of the tools and

datasets essential to accomplish this goal is introduced in the methodology section.

There is a similar product online called Allez Go, created by a user called Jason Mo from

Medium.1 He used Openpose to identify fencers in the images. His product does not produce

results of who wins the game, Instead, there will be arrows on the screen to indicate which fencer

has the right of way. Besides, his model cannot detect blade contacts in the videos. The work

presented in this paper is based on detectron 2 from Github. It is a CNN model that has an existed

https://www.airccse.com/adeij/vol3.html

Advances in Engineering: an International Journal (ADEIJ), Vol.3, No.3

14

dataset to identify human figures in the images. It also has a customized version that allow users

to train their own models.

After construction, the model was tested with the Culver School Fencing Team and compared to

an expert referee. The intention was to determine the accuracy of the program and make

improving modifications. Further discussion is contained in the methodology session.

2. BACKGROUND INFORMATION

2.1. Fencing Rules

The critical background information for this project is fencing rules. It is essential to understand

how to referee a fencing game. Below are the included fencing regulations used in the program:

When there is only one light on, the person who gets the light wins the game.

When both lights are on, the fencer who has the right of way will get the point. Below is the list

of situations that a person can gain or for feit the right of way:

1. When two fencers meet in the box, the fencer with the faster first step and who extends the

ir arm more quickly gains the right of way.

2. When attacking, the person who holds hands or raises hands loses the right of way.

Therefore, the other fencer earns the right of way

3. The fencer who does not have the right earn the right of way by hitting the upper part of the

opponent’s blade. For example, as demonstrated in figure 1.3, the left fencer gains the right

of way by parrying, or deflecting, the opponent’s blade.

4. When a fencer positions themselves in a fencing line, when the armandblade are aligned

and horizontal to the ground, they automatically gain the right of way. The other fencer can

earn the right of way back by hitting any part of the blade.

These are the basic rules for fencing, which are essential to understand AI referee coding

discussed in the second part of methodology.

2.2. Machine Learning and Neural Network

This project's most critical and challenging part is object detection, which means locating a

specific object among various goods in an image. The proposed tool is the Convolutional Neural

Network (CNN), which includes RCNN and masked RCNN. First, however, it is essential to

understand the concepts in machine learning (ML), neural network (NN), and deep learning (DL)

before introducing CNN.

Machine learning is a significant part of AI and the basis for NN. Unlike simply coding to make a

computer execute specific tasks, ML allows the computer to as similate how to perform them by

learning large quantities of data. The next step is creating a model with some sample data

establishing the variables to as certain how to under take a task. Then, set three categories:

training, validation, and test data. Training and validation data can modify the model to fit the

situation, predict next week’s weather, recognize human facial features, or calculate the

probability of winning a gamble. Test data can examine the accuracy of the model.

There are several types of machine learning: supervised, unsupervised, and semi-supervised.

Supervised learning means the machine or model is equipped with labeled data with inputs and

outputs, usually represented by x and y accordingly. The model compares its predicted results

Advances in Engineering: an International Journal (ADEIJ), Vol.3, No.3

15

with the actual results and then modifies the coefficients and uses a weighting system to fit the

data better. Unsupervised learning is when the data is not labeled; only the input, x, is provided.

The machine or model must find the pattern within the data by itself. Semi-supervised learning

uses both labeled and unlabeled data. The NN and CNN used in this project are both supervised

learning.

The neural network is a branch of machine learning. The basis of NN is multivariable linear

regression, which means many different inputs determine the output. The NN classifies all the

input variables as one layer and all the variables of the output as another layer. Additionally, there

is a hidden layer between the input and output layers. Like a neuron in the human brain, each

input layer is interconnected with each perceptron, a neural classifier, in the hidden layer. The

perceptron is also connected to each neuron in the output layer. Therefore, the data training can

alter the weight of the classifiers with in the hidden layer and then change the output to fit the

data.

Figure1 shows a graph to explain this relationship visually. Figure 2 shows them a th

representation of NN. X is the input, W is the perceptron in the hidden layers, and y is the output.

Figure 1. Simple Neural Network2

Figure 2. Math Representation of Neural Network

Deep learning (DL) is a more complicated version of NN. Instead of one hidden layer, DL

includes multiple hidden layers between the input and the output. Multiple layers allow more

changes in variables. It also allows the inputs to produce multiple outputs. Figure 3 is a visual

representation of DL. Because of multiple hidden layers, there are several W and several x.

Advances in Engineering: an International Journal (ADEIJ), Vol.3, No.3

16

Figure 3. Deep Neural Network3

Convolutional neural networks are NN types that focus on visual detection and recognition.

Therefore, it has an input, hidden, and output layer. If each pixel is processed by each neuron and

connected to the other neuron in the hidden layer, the magnitude of calculation required is

probably dozens of powers. Compared to different image recognition tools, CNN has a significant

advantage. It reduces the amount of data and analysis to a measurable amount. In most situations,

not all the objects in the image matter. Instead, only several factors need to be detected. As a

result, the edge of the image, lacking a target object, is detectable by 25 or100 pixels at a time,

dramatically reducing the magnitude of calculation. The CNN achieves this through a

convolutional kernel, which will scan an area of pixels instead of a pixel. A multivariable

equation in the kernel that determines the area the kernel will scan each time. Some variables in

the equation include bias, which is b; 𝑧𝑙, which is the output of the last scanned area, also called

the feature map; and fandp, which are the kernel coefficients. Figure 4 shows the complete

equation.

Figure 4. Full Equation for the Kernel4

There is also a simpler and more understandable version of it. N = (W-F+2P)/S+1. N is the output

of the coverage area; w is the input of the coverage area; f is the size of the kernel; p is the

padding value, which is part of the weights of the model; s is the length of each step moving to

the next area. With this method, the areas can be scanned and selected.

After scanning each area, it is processed in the pooling layer, which is critical to reducing the

magnitude of the calculation. The scanning areas are merged and condensed into the lower

dimension or smaller size in the pooling layer. There are several types of pooling. The most

common type is lp pooling, which filtrates the pixels by an equation with set coefficients. There

are also mixed pooling and random pooling, which are different ways of extracting the pixels

during the filtration process. The pooling output can process then ext area and further identify the

hidden layers. This scanning, pooling, and processing in the hidden layers will be iterated in

every scanned area. Finally, identifying the objects in the image will combine with the output

Advances in Engineering: an International Journal (ADEIJ), Vol.3, No.3

17

Because of the advantages of CNN, it is combined with many other tools to produce favorable

results. The first case is RCNN, which combines CNN with image classification. The image is

first processed through selective search to extract hundreds or thousands of regional proposals.

Then, each regional proposal is processed by CNN to find the bounding box and reflect the result

into feature maps after the pooling layer. Next, the results are classified through SVM to separate

the regional proposals into different categories. Finally, the categories are trained by bounding

box regression. However, this method has a significant problem: it takes a lot of time and storage

in the computer to process the proposals in CNN and categorize the min SVM.

Because of the drawbacks of RCNN, FAST-RCNN is developed. The first steps are the same as

RCNN, and the feature maps are produced after the pooling process in CNN. The feature maps

are then run through Region of Interest (ROI) pooling, which standardized the pooling size for

training. The result can then be trained through several methods, including bounding box

regression, Softmax Loss, and Smooth L1 Lost. Compared with RCNN, Fast-RCNN skip the step

of classification by SVM, which takes a tremendous amount of time. Additionally, users can

process the standardized pooling result more efficiently with the training method. Another more

advanced version, FASTER-RCNN, is also developed to improve on FAST-RCNN. Instead of

using selective search to extract the regional proposals, this tool uses Regional Proposal Network

(RPN) to generate regional recommendations.

It is also necessary to introduce some tool sand programs used in trainings and applications

related to CNN. The first tool is COCO annotator, a program designed to label objects and critical

points in images for the training process in machine learning. It can use rectangular boxes and a

key point tool to mark specific objects' names and locations in an image. This information can be

used to train through RCNN. However, COCO annotator can not run without docker engine, a

supporting program. The methodology section includes the links for downloading COCO

annotator and a docker engine. Some specific functions in the COCO annotator packet, such as

COCO evaluator, were used to predict and check the results. Tensorflow, an open-source machine

learning library, was also used in the code to graph the prediction results.

3. METHODOLOGY

Author names are to be written in 13 pt. Times New Roman format, centred and followed by a 12

pt .paragraph spacing. If necessary, use superscripts to link individual authors with institutions as

shown above. Author affiliations are to be written in 12 pt. Times New Roman, centred, with

email addresses, in 10 pt. Courier New, on the line following. The last email address will

havean18 pt. (paragraph) spacing following.

3.1. Human Post Estimation

The first part of the methodology focused on extracting images and labeling them. Pytube is

downloaded and installed from Github at this part of the process5. Next, Pytube was used to

download videos from YouTube and extract them with OpenCV. The next step was importing

some essential tools like Pandas and OpenCV. YouTube videos can be downloaded by obtaining

links using the download function from Pytube. Finally, the downloaded videos can be used by

uploading to a Google drive and synchronized by using Google Colab.

Then the videos were spliced into images using a python function. In the function. the video

capture tool from OpenCV could read the videos and separate them into images. After creating an

empty set, a loop was introduced to implement a video capture tool to read the frames and name

them accordingly. Once all the frames were named, the frames were returned to the empty set. It

was 60 images per second. These images were saved in another file for labeling.

Advances in Engineering: an International Journal (ADEIJ), Vol.3, No.3

18

The next step was using a prediction model to estimate human poses in the images extracted from

the YouTube videos. The program predicting human figures in the images was Detectron 2. It

was used by Face recognition in Facebook, incorporating with Pytorch and Tensorflow. For

acknowledgment, the Detectron model for the human figure was trained by Yousry Mohamed, an

engineer. He used thousands of images of human figures in different situations to train the model

to recognize them. He implemented a Docker engine and used a labeling tool called COCO

Annotator to train the model. The model used a data file from the COCO annotator file, as

indicated in the red characters. A line in the code was used to adjust the threshold for the model.

If the threshold was closer to1, human figures far back would be identified. A threshold of 0.3 or

0.4 could only identify humans close to the camera.

However, the model itself was not good enough, as it only predicted the position of the human

body in the images. The x and y-axis were established in each image to quantify the data.

Additionally, vital points were labeled and given coordinates to the joints. Matplotlib was used to

plug in the key points. CV2 could read the images in the im_name file labeled by the Detectron

model. Then the pred_keypoints tool in the model was implemented to label the joints.

Eachpoint's x and y coordinates were displayed accordingly in the empty set

"outputs_predict_list," which made each point easier to be located. There was an x-axis and a

reversed y-axis and 17 joint points for each fencer. The scope of the images could be customized

by changing the variables in the x and y axis and time.

At last, the coordinates of the critical points were saved in a python data file and downloaded.

The data would be helpful in the following two parts of the methodology.

3.2. Referee

This part introduced how to use the data and images obtained in part 1 to referee a fencing game.

Some basic setups were introduced: First, a python library called NumPy was used to create

arrays and locate the data points. Next, Matplotlib, another python library was used to graph the

data points. The next step was importing the Python data file downloaded in part1.

Matplotlib was able to graph out the data points in theNPY file in each frame. The NPY file was a

three-dimensional array. All the frames can be displayed by changing the number of frames, with

0 representing the first frame. Frame_key points was defined as the data point in the first frame. X

was defined as the x coordinate of the 34 points and y as the y coordinate. The x and y limits set

up the coordinate system and the scatter function in Matplotlib to graph the points. However, the

coordinates of the points were unclear unless they were labeled. Therefore, using the label tool to

adjust the text, as indicated in a loop.

The next step was obtaining each frame of the fencer's joints, including the coordinates and data

points. However, before using the points and applying fencing rules, it was essential to determine

when the bout started and ended. Determine the start as easy as usual, and the first frame was the

start of the bout. However, most of the videos did not stop immediately when the fencers made

the touch. Hence it was essential to determine when the fencers made the touch and stop right

there.

A loop of 70 was introduced as most videoswereshorterthan70frames. As the x coordinates of the

point in each frame defined x23, y23 was also defined as all the y coordinates. The 16th and the

33rd points, which represent the feet of each fencer, were taken. To hit each other, the two fencers

needed to be close enough. After several tests, it was found that the correct distance that two

fencers hit each other was approximately 80. Hence, a loop was used to check every frame and

stop until two fencers have a distance shorter than 80. After these steps, the frames between the

Advances in Engineering: an International Journal (ADEIJ), Vol.3, No.3

19

first and the last determined the result.

The most important part was using the frames and implementing fencing rules to determine the

result. The first step extracted the coordinates for the critical points to the referee's decision. The

significant parts of the body were hands and front foot (see the background for more

information). The coordinates of the fencer’s hands and feet in the first image and the image that

their distance was shorter than 80 were required. From the picture of the scatter plot above, it was

apparent that the corresponding label of joint points were 16 and 32 for each fencer's foot; 10 and

27 for each fencer's hand.

The list of coordinates, which was the keypoints_list, was used. x0 was defined as all the x

coordinates of the points and y0 as all they coordinate. Then the 16th and 32nd from the x0 andy0

were obtained and printed. The 0 number in the square bracket in the first roll represents the first

frame. Any frame could be received and displayed by changing the number there. So, if the loop

output x, from the prior session, was placed in the bracket, then the end frame coordinates could

be acquired. The brackets in the fourth and fifth and 9th and 10th line mean the label of the points,

which were 16 and 32 feet from each fencer. To obtain the coordinates of the fencer's hands,

change the number to 10 and27.

Nonetheless, there was a problem with the Detectron program. Typically, points from 1 to 17

represent the left fencer, and18-34 are indicative of the right fencer. However, in some cases, the

label switch position (1-17 represent right and 18-34 represent left) in the later frames. Figure

5and6 shows an example of the situation.

Figure 5. 10th Frame

Figure 6. 50th Frame

The image on the left was the 10th frame; on the right was the 50th frame. It was evident that on

the 10th frame, points labeled from 1 to 17 were on the left while it was on the right for the 50th

frame.

Listing all the situations where the labels switch positions could be a temporary solution. Take the

Advances in Engineering: an International Journal (ADEIJ), Vol.3, No.3

20

example above; for example, x_50_16 - x_10_33 would provide the result of the distance moved

by the right fencer from the 10th frame to the 50th frame.

The difference of the same joint of both fencers was essential to determine what exactly the

situation was. For instance, in the 10th frame in the example above, the x value of point 33 was

more significant than point 16. On the other hand, in the 50th frame, the x value of point 33 was

less than point 16. Therefore, if the value of x_33 – x_16 changes from positive in one frame to

negative in the other frame, the label switches position. Thus, changing the compare signs and the

corresponding joint point labels could solve all the situations.

The most common situation in saber was in boxbout, which means two fencers meet in the middle

of the strip and hit each other. In this situation, although the speed at the beginning was critical,

the acceleration process, or the change of speed, was more critical. The equation to calculate

acceleration concerning velocity was the derivation f velocity (dv) means the rate of change over

time. The equation of velocity over time was. As a result, acceleration was the second derivative

of the equation for distance changed over time. The most accurate way to calculate the

acceleration was extracting the x-coordinate of a fencer’s hand or foot in each frame, plugging

them into a scatter plot, and finding the second-degree polynomial regression. The second

derivative of the equation of the regression line was the acceleration. Table 1 and 2 shows the

data extracted in a video for both the left and right fencers.

Table 1. Left Fencer

Advances in Engineering: an International Journal (ADEIJ), Vol.3, No.3

21

Table 2. Right Fencer

The trend line tool in excel could generate a second-degree polynomial based on each chart.

Figure7and 8show the scatter plot as well as the polynomial regression.

Figure 7. Left Fencer Scatter plot

Advances in Engineering: an International Journal (ADEIJ), Vol.3, No.3

22

Figure 8. Right Fencer Scatter plot

The second derivative for the left fencer was -1.272, which indicates that the fencer was slowing

down. The second derivative for the right fencer was 0.9208. Therefore, the right fencer wins in

this situation.

However, such accuracy is unnecessary to determine who wins the about. Instead, merely

comparing the difference of frames is sufficient. To calculate e acceleration, extract the data from

the frame in the middle of the first and last frames, so if the last frame was frame 44, the middle

frame was 22.. Then the hand and foot distance moved from the first frame to the middle frame

and from the middle frame to the last frame were calculated. If the difference between the first

and middle, and the middle and last was significant, the acceleration was great.

Halfx was defined as x/2 and rounded resulting in the number of the middle frame. The middle

frame data could be extracted using the same code above. Other points could be extracted by

entering the number in the square brackets. These coordinates are used to calculate acceleration.

Although the calculation of only three frames (first, last, middle) might seem inaccurate, it was

sufficient to determine which fencer was faster. Suppose higher accuracy of calculation was

required, which was the case when analyzing the characteristics of each fencer. For instance, the

coordinates of ¼ frame or ¾ frame could be used to calculate and compare the difference.

The first step to calculate acceleration was to find the distance moved by each fencer from the

first frame to the middle frame and from the middle frame to the end frame. For instance,

x_23_32 represents the x coordinates of the left fencer in the last frame; x_11_16 represents the x

coordinates in the middle frame; x_0_16 represents the x coordinates in the first frame. Therefore,

a represents the difference between the end and middle frames. Letters were used to mark the

difference between the frames for later use. The difference between the middle and first frames is

represented by aa. As band bb calculate the right fencer in the same way. The value of a, aa, b,

and bb were printed. Calculations of hand movements were completed using the identical method.

The only difference was that the points were no longer 32 and 16: they were 10 and 27,

representing the hands of left and right fencers.

The formula could produce a value for acceleration by calculating the distance between the end

frame and the middle frame divided by the number of frames and the between the initial frame

and the middle frame divided by the number of frames. The four letters, e, f, g, h, all given the

initial value of 0, were used to represent the result. Some more letters were used to represent the

distance moved in the start process and acceleration process. A was the start process of the leg of

the left fencer, and aa was the acceleration process. Then band bb were used for the right fencer.

Next, c was the starting process of the hand of the left fencer, and cc was the acceleration process.

Likewise, d and dd were for the right fencer. Hence, four letters, o, p, q, and r, were used to mark

the calculation result. Expressly, o and p represent the index for leg, and q and r represent hands.

Advances in Engineering: an International Journal (ADEIJ), Vol.3, No.3

23

The next step was to compare the index of legs and hands between the left and right fencers to

determine who was faster. Because the speed of the leg was more important than hand in saber

fencing, the weighted method was used to determine who was faster accurately. The ratio between

the weight for leg and hand is 7:3. Therefore, e represents the leg index if the left fencer was

faster; f represents the leg index if the right fencer was faster; g represents the hand index if the

left fencer was faster; h represents the hand index if the right fencer was faster. Calculating the

values of the four letters indicated the result.

Next, each of the fencer's hand and leg indexes were added, determining response speed. The next

step included comparing the total values. However, when the difference between the speed is too

small, referees tend to call a draw, not rewarding points to either fencer. As a result, this situation

was added to the code. Therefore, if e<2 and g<2, the difference between the speed was minimal,

the result would be simultaneous. Otherwise, the fencer with them or eextensive total index wins

the game.

Additionally, the second rule was referencing holding, was added. As previously mentioned,

holding is called when the attacking fencer holds their arm back or raises it. If both fencers make

contact, the fencer committing the hold would automatically lose the advantage and the point.

The point corresponding 10 and 4 for the left fencer and 20 and 27 for the right fencer were used

to determine a hold. The middle frame was crucial because it was usually holding if a fencer’s

arm did no text end in them idle of the attack. If the waist and hand distance was smaller than10

in the middle frame, the fencer was committed to holding. The code was then merged with the

original code that determined who was faster. However, the problem of switching labels between

left and right fencers also exists. As a result, all the situations need to be listed and solved.

3.3. Train an AIReferee

The first two parts of the fencing rules are included in the code now. However, the following two

parts involved in the cutting blade were more complex. The reason was that the current Detectron

model could only identify human figures from the images. Therefore, a customized AImodel was

necessary to identify blades in the images. This lengthy process involved preparing a large

amount of data and training and testing it.

Sizable data was required to train an AI program to identify blades. This data included images

containing as a berblade. Some basic setups need to be done before creating and labeling the data.

First, install docker from the website6. Another critical tool for data labeling was the COCO

annotator, which could be downloaded in Github7. Once registered an account on the Docker

engine and COCO annotator, they could label images and create datasets. However, sometimes

the page for COCO annotator would not load. Some commands in the command prompt could

solve this issue. The first step is to locate the COCO-annotator file. Then utilize the "docker-

compose down" command to shut down the docker engine. Finally, use "docker-compose up" to

restart Docker engine. After that, the COCO annotator should be ready to run.

The first step to label the image in COCO annotator was to create a category. Users could

customize the category's name, which was saber in this case. The next step was to create dataset.

The name of the dataset might vary, but the default category for the dataset must be the one just

made, which was saber in this case. Three datasets were created to put train, validation, and test

data. After creating a dataset in COCO annotator, some images containing blades were placed

into the folder. The images could be obtained by downloading fencing videos and running the

program in part 1 that different videos to images. These images would be placed in the file with

the name of the data set in the COCO annotator folder. The images would appear on the webpage

after several refreshes.

Advances in Engineering: an International Journal (ADEIJ), Vol.3, No.3

24

The rectangular box and critical points were used to label an image. First, the rectangular box

could locate the object's position in the image. Then, key points were placed on the object for

more accurate recognition. This step consisted of hundreds or even thousands of images for

correct labeling. After labeling, the images and data were export edin to a JSON file and

downloaded to the computer. The JSON files were then placed into a folder containing three files:

train, validation, and test. The original images of each corresponding category would also be

placed in the files. Finally, the folder with three files was zipped and uploaded to google drive to

process in a customized AIprogram.

The first step is installing some basic setups. First, the zip file was imported after connecting

toColab. Unzipping the zipped folder involved using a tool called zip file. Next, the three files in

the folder would be read and processed by the COCO annotator instance. The train data was then

read by metadata and placed in a separate catalog. The descriptors of top, middle, and bottom

were given to the three critical point soft he blade. The training data would be separate edin to

many iterations, and the model would run each iteration at a time. After each iteration, validation

data would be used to test if the model meets the standard in the iteration. If it does not, then the

iteration would run again.

To train the data, the CFG model was imported. The model was based on CNN to separate the

layers of each image and detect the objects. However, if the CFG model were completely

standardized initially, it would take a long time to train it because no initial weight was given.

Therefore, a COCO file labeled human body was imported to provide the initial weight for the

model. The weight would then be changed as each iteration ran. Some other factors were set too.

The warm-up iteration, which means the iteration used with the human labeled file, was set to

be1000.The iteration for the training data was 500 because there were approximately 500images

Right now. The batch coefficient, which means the number of groups of images processed at each

iteration, was 2. The basic linear regression coefficient was 0.0002. The smaller this number, the

more accurate the model and the longer it took to train.

The result would be printed after the model ran, usually taking several minutes to several hours.

There were approximately 500 images in total, more than 20 iterations. Each row shows the

number of images in the corresponding iteration. The time it takes to run the iteration, accuracy,

loss coefficient, and other information were also included. As more images were included in the

iteration, the lose coefficient, the total_loss in the image, decreased. The decrease shows that the

model was more accurate as more and more images were placed. A scatter plot of loss coefficient

vs. the number of iteration and linear regression was generated. Figure 9showsthescatter plot.

Advances in Engineering: an International Journal (ADEIJ), Vol.3, No.3

25

Figure 9. Error Coefficient

As shown in the graph above, the lost coefficient decreased as the number of images increased.

The linear regression predicts that the lose coefficient would reach 0 in approximately

35iterations, which means the accuracy would be very high. Tensor Board, a visualization tool kit

enabling the tracking of metrics could also generate some more information. Figures 10 and 4.3

were some examples of it.

Figure 10. RCNN Evaluation Accuracy Graphs

The x-axis in both graphs means the number of images been processed. As a result, the accuracy

increased, and the loss coefficient decreased as the number increased.

Advances in Engineering: an International Journal (ADEIJ), Vol.3, No.3

26

Figure 11. RCNN Evaluation Accuracy Graphs2

The loss of the rectangular boxes and key points also decreases as the number of images

increases. Now the model was trained. Finally, test data could be put into a Mata data catalog and

test the model’s accuracy.

3.4. Test

The AI referee program was first tested daily in the Culver saber fencing team. Before conducting

the test, an Institutional Review Board (IRB) approval was required. There were three parts of the

IRB application process: take the online ethical course, fill the IRB form, and get all the

participants to sign the consent form. The IRB form and consent form were attached in the

appendix. After the IRB process, videos of fencers fencing were recorded every day. The videos

were then processed in the program and produced the results. The results were compared with the

results given by a national-level referee in China to determine the accuracy of the AI program.

There was a total of 15 videos. The predicting results and the actual results are shown in table 3.

Table 3. Predicting Results & Actual Results

There were only two mistakes out of the 15 games. The predicting result for the 10 th one was the

right fencer win while the actual result was simultaneous. The mistake was caused by the

standard for simultaneous in the program, which was 2, was too small. When the value was

adjusted to 7 and rerun the program, it produced the result simultaneously.

Advances in Engineering: an International Journal (ADEIJ), Vol.3, No.3

27

The situation with the 13th was more complicated. The program indicates that the end frame was

the 20th, as the distance between the two fencers was close. Figure11 shows the 20th frame.

Figure 12. The13thSituation

Although key points from 17 to 34 represent the left fencer, 1-16 did not represent the right

fencer. The error resulted from a mirror in the background. As a result, points 1 to 16 labeled the

left fencer in the mirror. Figure 12 is a screenshot of the video, showing how the mirror affects

the result. This problem could probably be solved by adjusting the threshold in Detectron 2 to

ignore the figures in the mirror.

Figure 13. Screenshot

4. RESULT

The accuracy of the program for the Culver Fencing Team was 86.67%, which was acceptable.

The accuracy is very high, considering the two mistakes caused by problems outside the code and

can be easily solved. Figure13 shows a pie chart that illustrates the accuracy.

Advances in Engineering: an International Journal (ADEIJ), Vol.3, No.3

28

Figure 14. Accuracy PieChart

The accuracy of the customized AI program is also very high. The loss coefficient is decreasing,

and with several more iterations, the precision should be good enough to detect the position of

blades. Figure 6.2showssome examples of the prediction of the model.

Figure 15. Prediction Example

As shown in the images above, some predictions are accurate though some are not. The model

will be more accurate as more data are trained.

5. CONCLUSION

The paper intends to solve the shortage of referees in fencing. The author is an experienced

saberfencer and wants to develop a computer program to replace human referees in tournaments.

There are four program sessions : identifying human subjects in the images, implementing

saberfencing rules with the data; training a customized AIprogram ; test the accuracy of the

program. The result is impressive: 86.67% of the games are judged correctly.

The success of AI referees has considerable implications in fencing. With an accurate computer

program to produce the result, one can solve these fencing situations without professionals

present. The programming ht be ideal for high school event organizers who struggle to hire

referees who can give correct calls while not expensive. The AI program can also be an assistant

to national-level referees. AI referees can provide a higher quality of competitions in low-level

tournaments and encourage more people to the fence as the game is fairer than before.

REFERENCE

[1] Jason Mo, “An Intro to AI in Fencing”, Medium, Oct 28th, 2020. Available:

https://thejasonmo.medium.com/artificial-intelligence-in-fencing-

Advances in Engineering: an International Journal (ADEIJ), Vol.3, No.3

29

6cd3b9a57859#:~:text=Founder%20of%20Allez%20Go%2C%20the%20world's%20first%20AI%2

0fencing%20referee.

[2] James Chen, “Neural Network”, Investopedia, Dec 8th, 2021. Available:

https://www.investopedia.com/terms/n/neuralnetwork.asp

[3] IBM Cloud Education, “Neural Network”, IBM, Aug 17th, 2020. Available:

https://www.ibm.com/cloud/learn/neural-networks

[4] “Convolutional Neural Network”, Baidu, Dec 18th, 2020.

Available:https://baike.baidu.com/item/%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7

%

[5] BD%91%E7%BB%9C/17541100?fr=aladdin

[6] Ssuwani,“Pytube”,Github,May20th,2021.Available:https://github.com/ssuwani/pytube

[7] Dockerinstall,docker.Available:https://docs.docker.com/engine/install/

[8] COCO annotator, Github, Available: https://github.com/jsbroks/COCO-annotator

AUTHOR

Rui Guo, high school Junior from Culver Academies in Culver, Indiana. Very interested in

STEM and computer science.

http://www.investopedia.com/terms/n/neuralnetwork.asp
http://www.investopedia.com/terms/n/neuralnetwork.asp
http://www.ibm.com/cloud/learn/neural-networks
http://www.ibm.com/cloud/learn/neural-networks

	1. Introduction
	2.1. Fencing Rules
	2.2. Machine Learning and Neural Network
	3. Methodology

	3.1. Human Post Estimation
	3.2. Referee
	3.3. Train an AIReferee
	3.4. Test
	4. Result
	5. Conclusion
	Reference

