
Advances in Engineering: an International Journal (ADEIJ), Vol.2, No.4

1

A STUDY OF METHODS FOR TRAINING WITH

DIFFERENT DATASETS IN IMAGE CLASSIFICATION

Yuxuan Bao

Northfield Mount Hermon School

ABSTRACT

This research developed a training method of Convolutional Neural Network model with multiple datasets

to achieve good performance on both datasets. Two different methods of training with two

characteristically different datasets with identical categories, one with very clean images and one with

real-world data, were proposed and studied. The model used for the study was a neural network derived

from ResNet. Mixed training was shown to produce the best accuracies for each dataset when the dataset is

mixed into the training set at the highest proportion, and the best combined performance when the real-

world dataset was mixed in at a ratio of around 70%. This ratio produced a top-1 combined performance

of 63.8% (no mixing produced 30.8%) and a top-3 combined performance of 83.0% (no mixing produced

55.3%). This research also showed that iterative training has a worse combined performance than mixed

training due to the issue of fast forgetting.

KEYWORDS

Supervised Learning, Image Classification, Convolutional Neural Network, ResNet, Multiple Datasets

1. INTRODUCTION

Image classification through machine learning can be applied to many different problems, such as

product defect checking in factories, product sorting in warehouses, and object identification for

everyday use. Currently, many large datasets (for example, ImageNet) are available for use to aid

in the training of models to perform image classification. However, there is often great difficulty

in using multiple available datasets for the desired categories for a given application, because the

different datasets usually have different characteristics that may or may not correspond with the

desired application. This research examines the effects of training a convolutional neural network

model using two datasets with drastically different characteristics but contain the same categories,

using different methods of training and ratios of mixing the datasets, with the goal of developing

a method of training with multiple datasets that has good performance on both datasets.

2. NETWORK STRUCTURE

The structure of the neural network model used for this study is a deep neural network with 25

layers, based on the design of the 34-layer ResNet proposed in [1]. The structure is shown in

Table 1, while a graphic representation of the network is shown in Figure 1. The details of each of

the layers, operations, and blocks, including modifications to the original and rationale for those

modifications, are discussed in this section.

2.1. Layers

Layers are the basic building blocks of the neural network model. The model used is very deep

and contains many of these layers.

Advances in Engineering: an International Journal (ADEIJ), Vol.2, No.4

2

Figure 1. Structure of Entire Network

A visual representation of the entire network. conv_layer is a convolutional layer.

residual_large_blocks contain three same-size residual blocks within each.

residual_block_changes are changing-size residual blocks. layers are fully connected layers.

Table 1. Network Structure

Layer/Operation Parameters Output Size

Inputs - 100x100x3

Convolutional Layer 5x5 kernel, depth 3 to 8, stride 1 100x100x8

Max Pooling 2x2 filter 50x50x8

3 Residual Blocks 3x3 kernel, depth 8, stride 1 50x50x8

Change Residual Block 3x3 kernel, depth 8 to 16, stride 2 25x25x16

3 Residual Blocks 3x3 kernel, depth 16, stride 1 25x25x16

Change Residual Block 3x3 kernel, depth 16 to 32, stride 2 12x12x32

3 Residual Blocks 3x3 kernel, depth 32, stride 1 12x12x32

Average Pooling 2x2 filter 6x6x32

Fully Connected Layer Tanh activation 200

Fully Connected Layer Softmax activation 26

2.1.1. Fully Connected Layers

Each fully connected layer is a function with multiple inputs and multiple outputs. To obtain the

result of one of the outputs, each input is subjected to batch normalization (see Sect. 2.2.1), then

multiplied by a weight parameter (different for each input), and then the results are summed

together to obtain the preliminary output. A bias parameter, which is a constant, is added to this

preliminary, and then an activation function is applied to the result to obtain the final output.

Thus, for each output, there are a number of weight parameters matching the number of inputs,

Advances in Engineering: an International Journal (ADEIJ), Vol.2, No.4

3

and one single bias parameter. For a layer with m inputs and n outputs, there are m weight

parameters and 1 bias parameter for each of the n outputs, and therefore, the entire layer has m x

n weights and n biases. For ease of calculation, the weights are stored as an m x n matrix (i.e. 2-

dimensional array), and the biases are stored as a 1 x n vector. Thus, the outputs can be easily

calculated with matrix multiplication: y = act(xW + b), where W is the weight matrix, b is the

bias vector, x are all the inputs arranged into a vector, y are all the outputs in vector form, and

act() is the activation function.

Both the weight and bias matrices are trainable parameters; they are changed according to an

algorithm every train step. However, they are initialized in a particular way:

Weights are initialized randomly in a truncated normal distribution centered at 0, which is like a

normal distribution but guarantees that no values further than two standard deviations from the

center will be picked. The standard deviation is set at 1/√m, where m is the number of inputs.

This causes the square deviation of the weights to be inversely proportional to the number of

inputs, and thus ensures that the initial preliminary output values are has approximately the same

range as the input values. In this network, these values are encouraged to stay between -1 and 1.

All biases are initialized at 0.1. Since these only cause a flat increase to the output value, the

number of inputs need not be considered when initializing them. Therefore, all of them are

initialized to a constant in order to save time and processing power. However, they could not be

initialized at 0—that would cause them to not be trained at all during training, since they would

cause no effect on the output values.

This network utilizes two fully connected layers at the end of the network, one with 6*6*32

inputs (from convolutional layers) and 200 outputs, and another with 200 inputs and 26 outputs,

with each output corresponding to one classification category. Figure 2 shows the structure of the

first fully connected layer, with 1152 inputs and 200 outputs, and using Tanh as the activation

function.

Figure 2. Fully Connected Layer Structure

Advances in Engineering: an International Journal (ADEIJ), Vol.2, No.4

4

The fully connected layer is the most versatile layer, since each output is parametrized by every

input (hence the name “fully connected”). Therefore, it is the most capable and flexible layer, if

resource-intensive. It is utilized for the final layers of the network in order to ensure the flexibility

of the network.

2.1.2. Convolutional Layers

Whilst the fully connected layer treats its input as a one-dimensional vector, the convolutional

layer treats its input as an image, represented by a three-dimensional tensor. The first two

dimensions refer to the regular width and height of the input image, while the third dimension is

its depth. For regular images, this refers to their color channels: red, green, and blue. However,

intermediate layers may produce images with an arbitrary number of layers which does not have

conventional meaning for each layer. In a convolutional layer, the input image is batch

normalized (see Sect. 2.2.1), then convolved, then added with bias and affected by an activation

function to produce the output. Both the input and the output are three-dimensional tensors.

The central operation performed by a convolutional layer is dependent on a kernel, a four-

dimensional trainable parameter. The kernel is a collection of three-dimensional cubes

performing operations on portions of the three-dimensional input image. For each such cube, the

depth is equal to the depth of the input image, while the width and height are usually much

smaller than the original width and height of the input image. The cube slides across the width

and height dimensions of the input image, and at each position, calculates the sum of all the

entries of the element-wise multiplication to obtain a single number for the preliminary output. As

the cube slides across the input image horizontally and vertically, a two-dimensional layer of the

preliminary output is formed, with the number at each location representing the result of the

calculation when the cube is centered at that location of the input image. For corner cases when

the cube extends outside of the input image, such as when the cube is centered at a corner of the

image, any point located outside the bounds of the input image is considered to have the value 0

(zero padding). As different cubes slide across the entirety of the input image, different layers of

the preliminary output are calculated. Therefore, the number of cubes matches the depth of the

output. This entire operation to produce the preliminary output is called a convolution. With

respect to TensorFlow specifications, the kernel has dimensions kern_width × kern_height ×

in_depth × out_depth. Each cube is represented via kern_width × kern_height × in_depth, and

there are out_depth cubes. In this network, all convolutional layers use kern_width = kern_height

= 3. Since the input image is only 100 by 100, using a 3 by 3 kernel allows the network to learn

gradually through layers while reducing the computational cost (smaller kernels contain less

parameters to train).

After the preliminary output is thus obtained, a bias parameter is added and an activation function

is applied as usual. Notably, the same bias is added for every value in the same layer of the

output, which means that there are only out_depth biases for each convolutional layer. This

massively reduces the number of trainable parameters while still preserving the complexity of the

network.

Since each cube in the kernel is desired to have different parameters, it is important that the

kernel weights be initialized randomly as to avoid identical cubes. The weights are initialized in

the same way as the fully connected layers, with standard deviation = 1/√(in_depth). (Though the

preliminary output values also depend on the kernel width and height, these are always small (≤

5) in this network and thus are not considered.) The biases are all initialized to 0.1 like the fully

connected layers.

The convolutional layer is a basic building block of this network and is thus utilized repeatedly.

Figure 3 shows the structure of the first convolutional layer in the network, with a kernel width

Advances in Engineering: an International Journal (ADEIJ), Vol.2, No.4

5

and height of 5 and an output depth of 8. The input image has dimensions 100×100×3(from the

RGB channels of the original image).

Figure 3. Convolutional Layer Structure

All convolutional layers use the ELU activation function, defined:

This function has similar benefits as the commonly used ReLU function. Like ReLU, ELU

alleviates the vanishing gradient problem by leaving the input unchanged if it is positive.

However, there are several additional advantages:

� ELU is differentiable at 0, unlike ReLU. This prevents possible calculation errors while

training.

� ELU returns small gradients for negative inputs, while ReLU returns 0. This aids gradient

propagation, since gradients are still considered for negative inputs instead of being ignored

completely.

� ELU returns negative results for negative inputs, while ReLU returns 0. This preserves the

sign of the original value and therefore gives the optimizer more information during training.

The main advantage of the convolutional layer over the fully connected layer is that it drastically

reduces the number of trainable parameters (weights and biases), making the network able to be

trained in a reasonable amount of time. For the example layer presented above, the convolutional

layer has 5×5×3×8=600 weights and 8 biases, for a total of 608 trainable parameters. However, if

it was to be replaced by an equivalent fully connected layer, with 100×100×3 inputs and

100×100×8 outputs, the number of weights required would be 100×100×3×100×100×8=2.4×10^8

weights and 80000 biases. Thus, the convolutional layer keeps the number of trainable parameters

manageable. Another advantage is that the convolutional layer preserves the spatial relationships

on the horizontal and vertical axes of the input image. Similar to how images are normally

perceived, pixels that are spatially close are grouped together and considered simultaneously by

Advances in Engineering: an International Journal (ADEIJ), Vol.2, No.4

6

the kernel. This should help the network in learning to identify smaller parts of the picture and

assembling these parts to determine a classification result.

2.2. OPERATIONS

There are a few operations that are applied within or in-between layers that are explained in detail

here.

2.2.1. Batch Normalization

Batch normalization is an operation that involves a set of images, and is performed on each image

at the same time in each fully connected or convolutional layer. The goal of this operation is to

rescale and shift all the input values so that all values have a mean close to 0 and a variance close

to 1.

During each training step, the mean and variance values of the current batch of images are

calculated, and used to train two parameters: the moving mean and moving variance. These two

parameters are updated during every training step with respect to a hyperparameter

bn_momentum, using this formula:

A higher bn_momentum causes the current calculated mean and variance to be less impactful on

the trained mean and variance. The bn_momentum used in this study increases as the current

iteration increases, in an exponential relationship:

During both training and testing, each value in every image is adjusted using the trained moving

mean and moving variance to make the mean of all values close to 0 and variance of values close

to 1. A simple shift and scaling is used to accomplish this:

This operation bounds all values in a range reasonably close to 0 so that training is efficient and

meaningful. This is especially important since the ELU activation function is used for

convolutional layers, which may cause values to become unbounded on the positive side. In

addition, ELU provides the most desirable behavior near zero (the function behavior changes at

0), so this operation bounds all values in a small range near 0.

2.2.2. Pooling

The pooling operation is performed after some convolutional layers in order to reduce the image

size of the output, reducing computational cost and condensing data. All pooling layers used in

this network have a filter size of 2x2 and stride of 2, so this operation takes a three-dimensional

image, splits each layer into 2x2 patches, and then merges each of these patches into a single

value, effectively cutting both the height and width of the original image in half, leaving the depth

unchanged. There are two ways to merge: average pooling takes the average of the four values to

replace them, while max pooling takes the maximum of the four. Following the original ResNet

design, this network utilizes a max pooling layer after the first convolutional layer to set up for

Advances in Engineering: an International Journal (ADEIJ), Vol.2, No.4

7

the residual blocks and an average pooling layer after the last convolutional layer in order to

reduce the computational cost of the succeeding fully connected layer.

2.3. RESIDUAL BLOCKS

Residual blocks are made up of two convolutional layers and a bridge that transfers the input of

the first layer to the output of the second layer, adding them together to produce the output of the

entire block. The activation function of the second convolutional layer is applied after the original

input is added. The central idea is that the network may learn to either use the two layers or to

omit them (by learning to push the weights of the two layers to 0). Thus, if the network

encounters problems trying to optimize a large network, it may be able to shrink the network and

optimize the smaller network instead. For a more detailed discussion of the benefits of residual

blocks, see [1].

2.3.1. Same-size Residual Block

The residual block is easier to build when the input of the first convolutional layer has the exact

same dimensions as the output of the second convolutional layer, that is, the two convolutional

layers do not modify the size of the image. When this is the case, the first input can simply be

element-wise added to the second output. Figure 4 shows a same-size residual block with the

dimensions of all images at 50×50×8.

2.3.2. Changing-size Residual Block

Building a residual block is trickier when the convolutional layer changes the dimensions of the

input image. Since the dimensions of the first input does not match that of the second output, they

cannot be directly added together. Instead, a special convolutional layer is added to transform the

first input to the proper dimensions. This special convolutional layer uses a kernel with

dimensions 1 × 1 × in_depth × out_depth, and uses a stride equal to the stride of the convolutional

layer that changed the image’s dimensions. This will allow the output for this special

convolutional layer to match the second output exactly in dimensions, while mostly preserving

the values of the input image. The 1×1 convolutions will produce different linear combinations of

the input layers for each output layer, and the stride size will omit data in between the strides to

reduce image size. After this layer, the results can be element-wise added to the second output as

usual. Figure 5 shows a changing-size residual block with input dimensions 50×50×8 and output

dimensions 25×25×16.

3. TRAINING

This section describes the details of how the model is trained. This research uses the Tensorflow

framework [3] in Python to train and test the neural network models.

Advances in Engineering: an International Journal (ADEIJ), Vol.2, No.4

8

Figure 4. Same-size Residual Block Structure

Figure 5. Changing-size Residual Block Structure

3.1 Loss

The loss used for training is the cross entropy, a standard loss for classification tasks. The cross

entropy is calculated with err = - y*ln(y_pred), where y is the actual label (0 or 1) of a certain

category for a given input image and y_pred is the model’s prediction for the probability of that

image belonging in that category. The total loss of the entire model is calculated by summing all

the errors across the categories for one input image together, then averaging this sum over all

input images.

Advances in Engineering: an International Journal (ADEIJ), Vol.2, No.4

9

3.2. REGULARIZATION

The model uses L2 regularization, which is added to the total loss for optimization. The

regularization factor is tuned as a hyperparameter.

3.3. OPTIMIZER

The optimizer used to minimize total loss is Momentum, which is a variant on the regular

gradient descent which moves the weights and biases based on the sum of the gradient and a

fraction of the last movement. Therefore, it tries to keep the “momentum” of movement, which

could allow the algorithm to skip over some small local minima.

The fraction of the last movement is a hyperparameter, and is called the momentum term. Since

the first few iterations of training should allow the algorithm to move in the correct general

direction of a minimum, later iterations should try to keep the momentum in that direction.

Therefore, for this research, the momentum term depends on the current iteration, and is set to:

A logistic function is used to steadily increase the momentum term as more iterations are

performed, but cap the momentum term at 0.6.

3.4. LEARNING RATE

The initial learning rate is tuned as a hyperparameter, but the training process itself changes the

learning rate in order to become more precise as training progresses. From the starting learning

rate, the learning rate is reduced at each iteration so that it smoothly decays 10% every 80

iterations. In addition, if the program detects that the training loss have not dropped for 500

iterations, then it decides that the training rate must be too high and cuts the training rate in half.

3.5. Batch

Since taking all of the training data available every iteration is very time-consuming, training is

done in batches, where each batch of training images is 1/20 of the images in the training set,

taken sequentially from the beginning. After running through 20 iterations, the entire training set

has been used for training, so it is shuffled and the next iteration use the first 1/20 of the newly

shuffled training set.

4. DATASETS

To examine the effects of training with multiple datasets, two datasets with very different

characteristics are used. Both datasets contain images of the same 26 categories of fruit, listed

here: Apple, Banana, Cantaloupe, Carambola, Cherry, Clementine, Coco, Date, Grape, Grapefruit,

Kaki, Kiwi, Lemon, Lychee, Mango, Melon, Orange, Papaya, Passion Fruit, Peach, Pear,

Pineapple, Pitahaya Red, Plum, Pomegranate, Strawberry.

Both datasets contain around 400 images per category.

Advances in Engineering: an International Journal (ADEIJ), Vol.2, No.4

10

4.1. DATASET 1 (NICE DATASET)

The first dataset is taken from part of the Fruits-360 dataset, a free online database of fruits from

[2]. This dataset consists of very nice fruit images. Every image is exactly 100 by 100 pixels

wide, has a completely white background, and always contains only one fruit in each image. A

typical image from Dataset 1 is shown in Figure 6.

4.2. DATASET 2 (REAL DATASET)

The second dataset is personally gathered as part of the research, and comes from web image

searches of the 26 fruit types. In contrast to Dataset 1, this dataset mostly contains rectangular

images with non-white backgrounds and may contain multiple fruits in the same picture. Each of

these images are cropped into square images (cutting out the edges that are longer, horizontal or

vertical), then resized down to 100x100 pixels as part of the program before being fed into the

models. However, to keep some things consistent with Dataset 1, all images from Dataset 2 show

only the exteriors of each fruit, and will never show a cut-open fruit. A typical image from

Dataset 2 is shown in Figure 7.

Figure 6. Nice Data Example

 Figure 7. Real Data Example

4.3. TEST SETS

One test set is created from each dataset by randomly taking 40% of the images in each category

out. This process forms Test Set 1 (Nice Test Set) and Test Set 2(Real Test Set). The performance

of models on these datasets is used to evaluate the general accuracy of the models. Whenever a

model is tested, it is run on both test sets to give accuracies for each test set, so its performance

could be measured for both datasets.

4.4. TRAINING SETS AND TRAINING METHODS

The other 60% of the images from the two datasets form the “nice” and “real” training sets.

Images from these training sets are used to train the models. Based on the training method,

different sets of images are used from these training sets. The two training methods described in

the following subsections are used because they have the advantage of low computational cost.

Both methods only require a single model to be trained, and require no additional processing

beyond partitioning the dataset randomly. The experiment thus studies the performance of these

training methods which only require minimal computational power beyond the base cost of

training one model itself.

Advances in Engineering: an International Journal (ADEIJ), Vol.2, No.4

11

4.4.1. MIXED TRAINING

In mixed training, a certain mixing percentage x% of the images of the “real” training set and

(100-x) % of the images of the “nice” training set are used to train the model. The images are

randomly chosen from each training set up to the required percentage, and the chosen images

from the two training sets are mixed together to train the models. Since the number of images in

the two training sets are around the same, the complimentary percentages ensure an

approximately equal amount of training data (around half of all training data) for each mixed

training model.

4.4.2. Iterative Training

In iterative training, 50% of the images of the “real” training set are used first to train the model.

After that, 50% of the images of the “nice” training set are used to train the last two layers (i.e.

the fully connected layers). The incentive for this method of training is that the “nice” training set

would provide the model with the general characteristics of each type of fruit (the convolutional

layers), while the “real” training set would train the model to identify the learned characteristics

at different locations and on different backgrounds (the fully connected layers). Training with the

“nice” training set is called initial training, while the secondary training with the “real” dataset is

called restricted training.

5. EXPERIMENT AND RESULTS

This section presents the experiments performed on the models and their results. The experiments

are designed to test the performance of the two training methods in Sect. 4.4.

5.1. EXPERIMENTAL DESIGN

The performance metric for all models in the experiment is the multiplicative average of the

“nice” test set accuracy and the “real” test set accuracy, that is,

Multiplication is chosen so that a model is given a better performance score if it performs well on

both test sets than if it performs flawlessly on one but badly on the other.

11 different mixed training sets are produced with the mixing percentage at 10% intervals

(respectively mixing at 0%, 10%, …, 100% of the “real” training set). Each of these training sets

are used to train a different model for a set number of iterations, and these models’

hyperparameters are tuned to optimize their performance. Their performances are then compared.

The 50% mixed training set is then duplicated for use by iterative training. 9 different models are

trained with this exact same training set, training on only the “nice” images first, then on the

“real” images. The 9 models have different ratios of initial training iterations to total training

iterations, at 10% intervals, from 10% to 90% (0% and 100% are omitted because in those cases

either the “nice” or “real” images are not trained on at all, so those are not considered iterative

training). The total amount of iterations for each model is constant, and is equal to twice the

amount of iterations used for mixed training, because each iteration in iterated training uses half

as much data than in mixed training. The iterative models use the best hyperparameters tuned

from mixed training.

Advances in Engineering: an International Journal (ADEIJ), Vol.2, No.4

12

The performance of mixed training models and iterative training models are then compared to

determine the best method of training with two different datasets.

5.2. Hypotheses

The hypotheses are that 1) in mixed training, the highest test accuracy for each dataset is obtained

when the corresponding dataset is mixed into the training set at the highest ratio, 2) in mixed

training, the performance score is at the highest near 50% mixing of both datasets, and 3) iterative

training produces a better performance score than the best results of mixed training.

5.3. DATA AND ANALYSIS
5.3.1. Mixed Training Data

Three sets of models are trained to tune the hyperparameters for the mixed training models. The

first set is trained to find the best learning rate. Each mixed training set is used to train four

Figure 8. Mixed Training, Learning Rate Tuning Results

models at different learning rates (0.001, 0,0025, 0.004, 0.0055) and the same regularization

factor (0.7) for 1500 iterations, and their performance are compared with each other. The results

are shown in Figure 8.

The best performance for each mixing percentage is obtained at either a training rate of 0.0025 or

0.004.

Advances in Engineering: an International Journal (ADEIJ), Vol.2, No.4

13

0.0

0.5

1.0

mixing percentage

1.0

0.5

0.0

0.5

1.0

log of reg factor base 10

0.0

0.2

0.4

0.6

0.8

performance

Figure 9. Mixed Training, Regularization Factor Tuning Results

Note that every point shares the same (x, y) coordinate with another point. These represent results

of models trained with the same mixing ratio and regularization factor but with different learning

rates.

The next set of models is trained to find the optimal regularization factor. Each mixed training set

is used to train 8 different models, with all combinations of the two best training rates found and 4

different regularization factors (0.1, 0.3, 2.0, 6.0). They are also trained for 1500 iterations, and

their results are combined with the models trained in the first set (at regularization factor 0.7) and

compared. The results are shown in Figure 9.

The best performance is obtained for regularization factors between 0.1~0.7.

The final set of models is trained to narrow down the best regularization factor and to finalize the

best mixed training model. Since the best performance for the prior sets of models are obtained at

the very end of the training process (the 1500th iteration), the improvements in the performances

of the models have not stalled out, so the final set of models are trained for 3000 iterations,

double the amount of iterations of the previous sets. The models in the final set are trained at a

learning rate of 0.004 and regularization factors of 0.1, 0.3, and 0.5. The results are shown in

Figure 10.

The set of hyperparameters that produces the best results on the greatest number of cases of

mixing percentages is a learning rate of 0.004 and a regularization factor of 0.5. This is the set of

parameters used for the experiment.

Advances in Engineering: an International Journal (ADEIJ), Vol.2, No.4

14

0.0

0.5

1.0

mixing percentage

0.0

0.2

0.4

0.6

0.8

reg factor

0.0

0.2

0.4

0.6

0.8

performance

Figure 10. Mixed Training, Final Tuning Results

5.3.2. Mixed Training Analysis

A summary of the highest top-1 accuracies and performance achieved on each mixing percentage

is shown in Table 2 and Figure 11.

The results mostly agree with hypothesis 1. The highest accuracy on “real” test data is obtained

when the training data is completely “real” data (i.e. a mixing percentage of 100%). Interestingly,

however, the highest accuracy on “nice” test data is obtained at a 20% mixing percentage. This

implies that partial mixing of the more difficult to learn “real” dataset has a beneficial effect on

the test accuracy of the easier “nice” dataset, even though the effect is very slight: the 20%

mixing compared to no mixing only increased the accuracy by 0.33%.

Table 2. Mixed Training, Top-1 Accuracies and Performance

Highest accuracies and performance among all mixing percentages are highlighted in orange.

Mixing % Real Data Accuracy Nice Data Accuracy Performance

0 0.22712341 0.9648086 0.468113896

10 0.28601596 0.96574885 0.52549286

20 0.32426092 0.96816653 0.560107852

30 0.36602533 0.9646743 0.593680112

40 0.38925388 0.9638684 0.611715718

50 0.40544346 0.95701814 0.622297615

60 0.44462693 0.94533247 0.648321119

70 0.45283905 0.9002015 0.63847192

80 0.46198967 0.8194762 0.614201621

90 0.47067106 0.6235057 0.540779084

100 0.50093853 0.21517797 0.308003439

Advances in Engineering: an International Journal (ADEIJ), Vol.2, No.4

15

Figure 11. Mixed Training, Summary of Top-1 Accuracies and Performance

The results slightly deviate from hypothesis 2. The performance curve has a noticeable shift

towards higher mixing percentage, peaking at 60%. This produces a best top-1 combined

performance of 64.8%. The top-3 combined performance curve from Figure 12 shows a similar

trend. This curve peaks at a mixing percentage of 70%, which produced a best top-3 combined

performance of 83.2%. One possible explanation for this behavior is that the “nice” dataset is

easier to learn than the “real” dataset. As the “real” data mixing percentage increases from zero,

the “nice” accuracy decreases very slowly at first, showing that the model can learn enough to

achieve a near-perfect accuracy on “nice” test data even with a fairly small amount of “nice”

training data. Therefore, the combined performance takes more from the trend of the “real” data

accuracy curve, which increases as the mixing percentage increases, than that of the “nice” data

accuracy curve, so the peak of the combined performance curve shifts right.

Note that whenever the training set only consists of data from one of the datasets (i.e. at mixing

percentages of 0% and 100%), the test accuracy of the other data set is 21~23%. If the two

datasets were not related at all, then training with only one dataset would cause the model to

behave effectively randomly with respect to the other dataset, with a projected accuracy of

1/26≈3.85%, because there are 26 categories in total. However, the actual accuracy being much

higher shows that using a dataset as the training set would produce a higher-than-random

accuracy on a correlated dataset.

0 20 40 60 80 100
mixing percentage0

20

40

60

80

100
combined performance

Figure 12. Mixed Training, Top-3 Performance

Advances in Engineering: an International Journal (ADEIJ), Vol.2, No.4

16

5.3.3. Iterative Training Data and Analysis

In iterative training, each model is trained with “nice” data first for some number of iterations,

then the last two layers are trained with “real” data, for a total of 6000 iterations. The

hyperparameters used for all training are those found to be optimal in mixed training: learning

rate=0.004 and regularization factor=0.5. The best accuracies and performance of all iterative

models trained are shown in Figure 13.

Figure 13. Iterative Training, Top-1 Performance

The results do not support hypothesis 3. Though the best accuracies for real and nice datasets are

both consistently average when compared to the mixed training results, the best combined

performance is very low, always lower than 45%. Further investigation shows that the restricted

training on “real” data never improves the combined performance for any of the 9 models. The

core problem is a fast forgetting issue. For example, the various accuracies for the 50% “nice”

data iterations model during the “real” data training are shown in Figure 14. Though the “nice”

accuracy at iteration 0 is very high (~95%) due to the prior “nice” data training, it quickly drops

to 20% within 200 iterations of training with only “real” data. Therefore, as the “real” data

accuracy rises, “nice” data accuracy drops, resulting in low combined performance.

From another perspective, iterative training also does not benefit accuracies of individual

datasets, as no individual accuracy exceeded the best results from mixed training. This can be

explained by the limited flexibility due to the restrictiveness of only allowing training of the last

two layers.

Advances in Engineering: an International Journal (ADEIJ), Vol.2, No.4

17

Figure 14. Iterative Training, Accuracies of 50% Model during Restricted Training

6. APPLICATIONS

The method developed in this research can be applied to scenarios of image classification in

which two datasets with the same categories, one more difficult to learn than the other, are

available, and good accuracy is desired on both datasets using a single neural network model.

This allows for a wide variety of applications, for example:

� An autonomous supermarket, where both item sorting (cleaner images) and customer

checkout (noisier images) can be done with image classification, and both types of images

are widely available online.

� Types of object identification (e.g. species of flowers, trees, or minerals), where both finely

preserved samples (cleaner images) and fieldwork images (noisier images) are available, and

clients may use the network to identify both types of images.

� Product searching with an image of the product, which is a subcategory of object

identification. For example, an application can apply the methods presented in this paper to

identify the brand and make of a coat in an image, and then redirect a user to a seller of that

coat.

� Online learning with a similar scenario is possible if there are two characteristically different

data sources which provide consistently clean/noisy data over time. In such a scenario, buffer

the incoming images from both data sources, and then train with batches mixing images from

the buffer at the aforementioned ratio of 3 : 7.

7. LIMITATIONS

The limitations of the results of this research are listed here:

� The study is constrained to convolutional neural networks, specifically the ResNet model.

Other machine learning approaches, such as genetic algorithms and other types of neural

networks, may behave differently. However, CNNs that are similar to ResNet are expected to

Advances in Engineering: an International Journal (ADEIJ), Vol.2, No.4

18

exhibit similar behavior. Similarly, the study is constrained to image classification tasks and

differences may be observed for other tasks.

� The images used as dataset in this study are relatively small in size (all images are

normalized to 100x100 px). This also implies a thin network, with few trainable parameters

every layer compared to CNNs used in most other studies. A larger network may produce

different results.

� Both training methods studied use only one trained CNN to perform the classification task.

Methods that use more than one model may perform better in accuracy, but would be more

computationally expensive.

8. CONCLUSION

Two different methods of training with two characteristically different datasets with identical

categories were proposed and studied. The model used for the study was a neural network derived

from ResNet. The correlation between the two datasets caused a higher-than-random accuracy on

one dataset when only data from the other dataset was used to train the model. Mixed training

was shown to produce the best accuracies for each dataset when the dataset is mixed into the

training set at the highest proportion, and the best combined performance when slightly more of

the more difficult to learn dataset was mixed in than the other dataset. Iterative training was

shown to have a worse combined performance than mixed training due to the issue of fast

forgetting, and also performs worse than mixed training in terms of accuracies of individual

datasets.

ACKNOWLEDGEMENTS

The author would like to thank the Chinese Academy of Sciences for providing computational

power for this research.

REFERENCES

[1] He, K., Zhang, X., Ren, S., & Sun, J. (2015, December 10). Deep residual learning for image

recognition. Retrieved from Arxiv database. (Accession No. arXiv:1512.03385v1)

[2] Muresan, H., & Oltean, M. (2018). Fruit recognition from images using deep learning. Acta

Universitatis Sapientiae, Informatica, 10(1), 26-42. Abadi, M., Agarwhal, A., Barham,P., Brevdo, E.,

Chen, Z., Citro, C., . . . Zheng, X. (2016, March 16).

[3] TensorFlow: Large-Scale machine learning on heterogeneous distributed systems. Retrieved from

Arxiv database. (Accession No. arXiv:1603.04467v2)

AUTHOR

Yuxuan BaoYuxuan is a high school senior at Northfield Mount Hermon School in Gill,

MA. He enjoys compu ter science very much and is excited about the capabilities of

artificial intelligence. He is in the platinum division of the USACO contest.

