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ABSTRACT 

 
This paper presents a closed-loop control system with regulating blood glucose level in type-1 diabetic 

patients. The contribution of this paper is twofold for controlling the glucose level in insulin. Firstly a 

direct model reference adaptive control algorithm (DMRAC) for the glucose insulin system is considered 

based on the command generator tracker (CGT). Secondly, another significant control MIT adaptive 

control method (MITC) is desired to obtain a comparative study between the two proposed controllers. The 

achievement of our study is to affect these two algorithms for the regulation of the glucose level in type 1 

diabetes, because the problem of the diabetes is one of the largest difficulties necessities a methods for 

treating the disease. Diabetes is a malfunction in the glucose-insulin system; so ours controllers can 

successfully assure that the blood glucose levels should be maintained between 80 mg/dl and 120 mg/dl 

before meals; less than 180 gm/dl after meals. The application of these controllers is tested in silico for 

effective diabetic I patients. The simulations demonstrate that the developed algorithms lead to an 

asymptotically stable error and illustrate the validity of the algorithms. 
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1. INTRODUCTION 
 

Diabetes mellitus is a widespread disease. According to the World Health Organization (WHO), 

globally in 2013 approximately 382 million people suffered from diabetes world-wide and more 

than 80% of people with diabetes live in low-and middle-income countries. For 2030, an 

augmentation to 552 million patients is prognosed by the International Diabetes Federation [1]. 

The diabetes is a severe disease that occurs when the body has difficulty regulating the quantity 

of glucose in the blood stream. Therefore, people with type 1 diabetes must take daily insulin 

injections to survive [2].  To avoid patients having to establish each insulin quantity manually, 

and to limit the vast variation in blood glucose concentration, an artificial pancreas needs to be 

developed as an important scientific research aim. The primary idea is to calculate the required 

insulin dose using a control algorithm based on continuous glucose measurements, which are 

obtained via a sensor without human input. So it is necessary to use an appropriate control for 

these patients. 

  

Most diverse control algorithms for regulating blood glucose level techniques have been proposed 

and often tested in silico via computer simulators [3, 4, 5]. One of the traditional controllers is 

PID controller [6, 7].  Like in several physical applications of PID control, Steil et al in [8] used a 

couple of PID controllers on the glucose-insulin system. One of the disadvantages of PID 

controller is that it is not considered the changes in patient’s parameters which can vary from 

patient to patient. Our challenges in this study is that proposed two robust closed-loop controllers 

for blood glucose like the direct model reference adaptive control (DMRAC) and the adaptive 

MIT control.  
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The state of art of an adaptive control approach originated by Kaufman et al [9]. In this approach 

an asymptotic stability, this last is assured if the system is almost strictly positive real (ASPR); 

hence if there exists a gain K such that the closed-loop transfer function is strictly positive real 

(ASPR). This gain need not be physically realized during implementation. The important point in 

most of this paper is that proposed two controllers by employing direct model reference adaptive 

control and the adaptive MIT control with the regard to the complexity and the positivity on both 

the inputs and the output. Then we will control the insulin and the glucose level of the patient.  

 

The paper is organized as follows. The glucose-insulin mathematical model is explained in 

Section 2. The design of the adaptive MIT control algorithm is explained in Section 3. Then the 

problem statement and proposed direct model reference adaptive control structure are shown in 

Section 4. Section 5 describes the application of the tow controllers on the mathematical model of 

the glucose - insulin dynamics, and then the test on patients, and gives simulation results with 

discussion. Finally, Section 6 presents concluding and future work. 

 

2. GLUCOSE-INSULIN MATHEMATICAL MODEL 
 
There are several researches that were already developed on the dynamics of the glucose-insulin, 

as in the model of Bolie, Hovorka and the model of Bergman; this last is widely used in recent 

years. 

 
2.1. Bergman Model 
 

The original glucose minimal model describes how the glucose level behaves according to 

measured insulin data during an IVGTT (the Intravenous Glucose Tolerance Test). This model is 

defined by these equations [10]: 
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Where )(tG  (mg/dL) is the blood glucose concentration. )(tI  (mU/L) the blood insulin 

concentration, and )(tX (1/min) is the effect of active insulin. 

 

Then 
bG  (mg/dL) steady state blood glucose concentration (baseline). 

bI  [mU/L] steady state 

blood insulin concentration (baseline). 

 

Then in [11] the state space representation of the digestion dynamics is: 
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)(1 tGx = , )(2 tXx = , )(3 tIx =  

with )(tu  is the inputs, it represent the insulin infusion and )(td  represent the meal perturbation. 
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Using )(su  and )(sy  the Laplace transforms of )(tu  and )(ty , the transfer function model of the 

system to be written as: 

 

)()()()()( sdsGsusGsy dp +=  

 

 Where )(sG p
is the transfer function of the system. )(sGd

 is the transfer of the meal disturbance. 

 

2.2. Bolie Model [12] 
 

The bio-mathematical Bolie model is simple and compatible. The model characterized the 

glucose- insulin system, it used a differential equations with four parameters: α , β , δ  and γ . 

 

Where 

α : is the pancreatic insulin sensitivity to insulin.  

 

β : represent the blood glucose concentration. 

 

δ : the tissue glycogen storage.  

 

 γ : the tissue glucose employ to high blood-glucose concentration.  

 

The study described in this section will based on the bio-mathematical model of Bolie. 

 

With reference to the blood glucose-insulin system, the corresponding first-order differential 

equations of the insulin and glucose regulatory sub-systems are given as [12.13]. 

yxpx βα +−=&                                                                                                                 (3) 

yxqy δγ −−=&                                                                                                                            (4) 

The glucose ingestion q is the input; then y is the output of the blood glucose system, it is the 

blood glucose concentration. The blood insulin concentration x, and the insulin input p can be 

derived from (5) to (8). Such that α  β , δ and γ  are the parameters of the glucose-insulin 

system. From equations (3) and (4), we have: 
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From equations (3) and (4), the differential equation for the glucose concentration y designed 

without insulin infusion can be writing from (9). 

 

qqyyy αβγαδδα +=++++ &&&& )()(                                                                                              (9) 
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 The differential equation of the second order insulin concentration for x is derived as: 

 

qxxx ββγαδδα =++++ )()(&&&                                                                                                  (10) 

 The relationship between, glucose concentration is derived from (3) and (4).  

 

3. DESIGN OF THE MODEL REFERENCE ADAPTIVE MIT CONTROLLER 
 

In this section the closed-loop algorithm is determined and depends only on the one parameter 

regulating parameter K of controller.  The desired response of the reference model is ym.  Then the 

error between the system output yp   and the reference output ym of the model can be selected as: 

m
y

p
ye −=  . Note that the adaptive mechanism adjusts the controller parameters depends on the 

error value and the cost function selected in (11). The cost function determines the direction of 

the regulation made to the controller. 
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For the output system track the reference trajectories in the closed loop, it is obvious to have a 

small value of J. Let us note that the minimization of the value of J requires the change of this 

parameter in the form of the negative gradient as follows: 
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Where ϕ  determine the rate of adaptation and the partial derivative 
θ∂

∂e  is called the sensitivity 

derivative of the system. Different cost function can be chosen: 
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From the above equations, the control up (t) is written in an actual form as follows. [14]. 

 

)()( tuKtu mpp =  

)()()()( tuGtuGtyty mmppmp −=−  

 

Then 
mmmpp uGuKGe −=  

 

This expression was established by supposing that 
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)(tuKGy mppp =  

 

While the model reference is known, it can be easily find the derivative of the error 
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Next, we can find the adaptation law of adjustable parameter, therefore 
pK is defined according to 

the following adaptive rule 
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Where   mmmm δγβα ,,, are the parametric values of the normal healthy model [15]. 
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Figure. 1. Scheme of the reference adaptive control based on the MIT algorithm . 

 

4. DESIGN OF THE DMRAC ALGORITHM CONTROLLER 
 

The problem of DMRAC will be solved for the following equations of the process 
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Where )(tx p
 is the state vector, )(tu p

 is the control vector, )(ty p
 is the plant output vector, 

and
pA  , 

pB  and pC are matrices with appropriate dimensions. The range of plant parameters is 

assumed to be known with 
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mjnibjibb ijpij ...1,...1,),( ==≤≤  
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p

A , and ),( jib
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 is the th
ji ),( element of 

pB  . 

The aim is to find a control )(tu
p

 such as the outputs of the system )(ty
p

 follow the output of 

reference model )(ty
m

, this last is described 
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mA  , 
mB  and 

mC are matrices with appropriate dimensions. The model is supposed stable. It is 

significant to note that the dimension of the state model can be made lower than that of the 

process, although both must have the similar number of output. 

 

The model incorporates desired plant behaviour and in many cases [ ] [ ])(dim)(dim txtx
mp

>> .The 

adaptive control algorithm being presented is based upon the command generator tracker concept 

(CGT) developed by O’Brien and Broussard. [16]. 

 

To simplify the development of the control law, the concept of CGT at variable time is presented 

here. If a generating perfect tracking is reached, it means )()( tyty mp =  for 0≥t , the trajectories of 

corresponding control and state are noted )(*
tx p  and )(* tu p . The ideal system is such as it satisfies 

the same dynamics as that real system. Moreover, the output of the ideal system is identically 

stable at the output of the reference model, mathematically we have 
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Where the ijS  sub matrices satisfy the following conditions  
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The adaptive control law based on this CGT approach is selected as [17] 

 

( ) ( ) ( ) ( ) ( ) ( )( ( ) ( ))
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u t K t x t K t u t K t y t y t= + + −                                                                          (15) 

 

Where )(tK e , )(tK x
 and )(tK u

  are adaptive gains and concatenated into matrix )(tK   as follows  

[ ])()()()( tKtKtKtK uxe=                                                  (16)                                                
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Defining the vector )(tr  as   
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The control )(tu
p

is written in a compact form as follows. 

 

)()()( trtKtu p =                                                                                                                           (17) 

 

Where )(tK is defined according to the following adaptive rule [18] as: 
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The diagram of the reference adaptive control based on the DMRAC algorithm is illustrated in 

figure2. 

 

 

 

 

                  

 

 

 

 

 

 

 

 

 
Figure. 2. Scheme of the reference adaptive control based on the DMRAC algorithm. 
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In general, the ASPR conditions are not satisfied by most real systems. Barkana and Kaufman [9] 

have remedied this situation by showing that a non-ASPR plant of the form 

pppp BASICsG
1)()( −−= can be augmented with a feed-forward compensator )(sH  such that 

the augmented plant transfer matrix )()()( sHsGsG pa += is ASPR. 

 

It was shown in [2] that in the resulting adaptive controller, the error between the model and the 

system is limited and small enough.  Moreover, the gains will not be fixed but adaptive. The 

modification, incorporating the supplementary feed-forward into the reference model output, has 

been developed [18]. In [18] , asymptotic model following was achieved using a strictly proper 

stable feed-forward compensator . However it is also possible using a proper but not strictly 

proper stable feed-forward compensator [19]. 

 

The following theorem summarizes the stability of the approach DMRAC with augmented of the 

plant and the model. 

 

Theorem 1 [18] 

 

Let us consider the adaptive controller given by  (15), With the adaptive rule defined by equation 

(16), if the following designed conditions are satisfies, Then, the error output  )()( tyty mp −   

cancel yourself  asymptotically and all the states and the profits will be limited. [17]. 

 

1. )()()( sHsGsG pa +=  is ASPR, where the transfer function of the plant is )(sGa
 and )(sH  is 

the transfer function of the compensator. 

 

2.  A solution exists for the system of equation CGT variable in time. 

 
3.  The compensator )(sH  is stable; it means )(sH  has all its proper values in the left half-plane.  

 

5. SIMULATION RESULTS AND DISCUSSION  
 

Simulation results of the model reference adaptive MIT control and DMRAC for the Bolie model 

of the glucose-insulin are given away in the following subsection (5.1), (5.2). Then the simulation 

results of the same tow controllers for the Bergman model are shown in subsection (5.3), (5.4). 

 

5.1. Simulation Result with the MIT control on the Bolie Model 
 

In this section we apply the MIT control .The results of this above described control idea are 

shown in Figure.3 to Figure.4.  
 

Let the transfer function of the system glucose for a diabetic person for the Bolie model: 
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Then let the transfer function of the system insulin for a diabetic person:  
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We note that for the simulation we considered the following values of systems parameters: 
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Table 1.  The values considered for the simulation of the Bolie Model. 

The parameters The normal person  The diabetic person 

α  0.05 2.25 
β  0.96 15.12 

γ  6.48 0.93 

δ  1.76 0.12 

 

It is clear that for the diabetic person, there is a reduced value of γ which represents reduced 

sensitivity due to increased-resistance to insulin and an augmented value of β  which refers to the 

insulin release in response to the improved glucose concentration. 

 

As our model bases, we considers the transfer function of the real system of glucose for a person 

in good health, it is considers a reference model.  

 

By using the values of parameters for system of glucose-insulin, we obtained the transfer function 

of a healthy person and of a diabetic person. In this simulation system, the aim of the command 

is to join the system output to track their desired value.  

 

Figure.3, and Figure.4 represent the outputs of the system and the reference model for the MIT 

control, i.e. the concentration of blood glucose for a healthy person (the reference model) and the 

concentration of blood glucose for a diabetic person (real system) for tow initial values  

considered in simulation 80mg/dl and 100 mg/dl. The perfect tracking is visible in permanent 

mode; the representation of input signal (the insulin infusion) is given in Figure. 5, we see that it 

is bounded.    
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Figure.3. The outputs of the glucose concentration for a person in good health and a diabetic person  

for  an initial value of 100 mg/dl for MIT control. 
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Figure.4. The outputs of the glucose concentration for a person in good health and a diabetic person for 

an initial value of 80 mg/dl for MIT control. 
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Figure.5. The control signal (the insulin infusion (u\min)). 

 

5.2. Simulation Result with the DMRAC control on the Bolie Model 
 

In this section we apply the control law (17). Simulation results of direct model reference 

adaptive control are shown in Figure.6 to Figure.8, such that the Figure.6 and Figure.7 represent 

the outputs of the system and the reference model for tow initial values  considered in simulation 

80mg/dl and 100 mg/dl. Then the representation of input signal is given in Figure. 8, we see that 

it is bounded.  

 
The glucose insulin system for the tow cases of simulation of a healthy person and a diabetic 

person is of relative degree one and it is minimal phase, it is then ASPR (Almost Strictly Positive 

Real) and thus the error convergence is guaranteed. The application of this adaptive controller to 

the real system leads to an error asymptotically stable.  
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Figure.6. The outputs of the glucose concentration for a person in good health and a diabetic person for 

an initial value of 80 mg/dl for DMRAC control. 
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Figure.7. The outputs of the glucose concentration for a person in good health and a diabetic person for an 

initial value of 100 mg/dl for DMRAC control. 
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Figure.8. The control signal (the insulin infusion (u\min)). 

 

5.3. Simulation Result with the MIT control on the Bergman Model 
 

We considered the following values of systems parameters: 

 
Table 2.  The values considered for the simulation of the Bergman Model. 

The parameters Normal Human  Patient 1  Patient 2  

P1 0.0317 0.022 0.028 

P2 0.0123 0.0123 0.025 

P3 4.92×10
-6 

6.92×10
-6 

0.000005 

n 0.2659 0.2660 0.2810 

Gb 80 80 80 

Ib 7 7 7 

 

Simulation results of MIT control without disturbance are shown in Figure.9 to Figure.10. 

Then for direct model reference adaptive control in Figure.11 to Figure.12 
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Figure. 9.  The outputs of the glucose concentration of the MIT control for initial value Gb=300 (mg/dl).  
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Figure.10. The insulin infusion (u\min) of the MIT control for initial value Gb=300(mg/dl).  

 

5.4. Simulation Result with the DMRAC control on the Bergman Model 
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Figure. 11.  The outputs of the glucose concentration of the DMRAC control for initial value 

Gb=300(mg/dl).  
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Figure.12. The insulin infusion (u\min) of the DMRAC control for initial value Gb=300(mg/dl) 

 

According to the above simulation  in Figures 9, 11 it is evident that the tracking of the glucose 

response for a diabetic person converge to the reference model. The glucose response of the 

diabetic person fluctuates. The convergence rate depends on the adaptation gain. It is important to 

get a reasonable value of this parameter. 

 

From Figures.3,4 and Figures.6,7, for the Bolie model and Figures.9, 11 for the Bergman model, 

we can see that the convergence of glucose-insulin system output towards its reference, for the 

DMRAC controller is faster than the MIT controller, in general, we are more interested to the 

performances of the system in steady state, where we note that the use of the DMRAC is better 

than the MIT.  Note that in Figure 3 and Figure 4, the adaptation of the glucose response of the 

diabetic to the healthy person is not smooth at time 0 to 5h. 

 

6. CONCLUSIONS 
 

In this paper, we have presented a treatment of continuous insulin infusion for diabetic patients 

from a control perspective. The Bolie and the Bergman Models is presented and discussed. Then 

an extension of model reference adaptive control based on DMRAC and MIT methods to the 

glucose-insulin system was developed. We conclude that the blood glucose concentration of a 

type 1 diabetic patient is stabilized at the desired level. The robustness of the two 

controllers has been confirmed through different parameters in patients. A simulation study 

has been presented to illustrate the effectiveness of the proposed controllers. 
 

The applicability of adaptive controllers has now been extended to the non linear systems 

physiologies. Simulation results demonstrate the viability of the DMRAC and MIT algorithms 

designed.  

 

Further works must be carried for an other models of glucose insulin system and an other 

controllers.  
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